首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13267篇
  免费   81篇
管理学   1944篇
民族学   120篇
人才学   1篇
人口学   2635篇
丛书文集   27篇
理论方法论   773篇
综合类   314篇
社会学   5963篇
统计学   1571篇
  2023年   24篇
  2022年   18篇
  2021年   30篇
  2020年   72篇
  2019年   77篇
  2018年   1714篇
  2017年   1746篇
  2016年   1165篇
  2015年   115篇
  2014年   126篇
  2013年   486篇
  2012年   434篇
  2011年   1236篇
  2010年   1101篇
  2009年   860篇
  2008年   883篇
  2007年   1063篇
  2006年   83篇
  2005年   320篇
  2004年   343篇
  2003年   295篇
  2002年   168篇
  2001年   90篇
  2000年   80篇
  1999年   55篇
  1998年   38篇
  1997年   33篇
  1996年   75篇
  1995年   36篇
  1994年   34篇
  1993年   52篇
  1992年   39篇
  1991年   35篇
  1990年   26篇
  1989年   22篇
  1988年   32篇
  1987年   24篇
  1986年   23篇
  1985年   22篇
  1984年   32篇
  1983年   24篇
  1982年   28篇
  1981年   20篇
  1980年   20篇
  1979年   21篇
  1978年   13篇
  1977年   22篇
  1975年   21篇
  1974年   19篇
  1973年   10篇
排序方式: 共有10000条查询结果,搜索用时 12 毫秒
881.
In order to broadcast an alert message from the accident site to the control center as soon as possible, the roadside units (RSUs) act as the critical component in vehicular ad hoc networks (VANETs). It is not possible to make a pervasive RSU deployment due to the huge cost and market requirement. Hence, how to deploy a minimum number of RSUs in a given region becomes a challenge problem. In this paper, we present an analysis for the total delay of broadcasting alert messages in VANETs along highways. Based on the analysis, the relationship between optimal number of RSUs with the highway distance is given. Moreover, the experiment results verifies the delay analysis and the optimization of RSUs deployment.  相似文献   
882.
We consider two-machine scheduling problems with job selection. We analyze first the two-machine open shop problem and provide a best possible linear time algorithm. Then, a best possible linear time algorithm is derived for the job selection problem on two unrelated parallel machines. We also show that an exact approach can be derived for both problems with complexity \(O(p(n) \times \sqrt{2}^n)\), p being a polynomial function of n.  相似文献   
883.
For a given graph and an integer t, the MinMax 2-Clustering problem asks if there exists a modification of a given graph into two maximal disjoint cliques by inserting or deleting edges such that the number of the editing edges incident to each vertex is at most t. It has been shown that the problem can be solved in polynomial time for \(t<n/4\), where n is the number of vertices. In this paper, we design parameterized algorithms for different ranges of t. Let \(k=t-n/4\). We show that the problem is polynomial-time solvable when roughly \(k<\sqrt{n/32}\). When \(k\in o(n)\), we design a randomized and a deterministic algorithm with sub-exponential time parameterized complexity, i.e., the problem is in SUBEPT. We also show that the problem can be solved in \(O({2}^{n/r}\cdot n^2)\) time for \(k<n/12\) and in \(O(n^2\cdot 2^{3n/4+k})\) time for \(n/12\le k< n/4\), where \(r=2+\lfloor (n/4-3k-2)/(2k+1) \rfloor \ge 2\).  相似文献   
884.
The cutwidth problem for a graph G is to embed G into a path such that the maximum number of overlap edges (i.e., the congestion) is minimized. The investigations of critical graphs and their structures are meaningful in the study of a graph-theoretic parameters. We study the structures of k-cutwidth \((k>1)\) critical trees, and use them to characterize the set of all 4-cutwidth critical trees.  相似文献   
885.
Let \(G=G(V,E)\) be a graph. A proper coloring of G is a function \(f:V\rightarrow N\) such that \(f(x)\ne f(y)\) for every edge \(xy\in E\). A proper coloring of a graph G such that for every \(k\ge 1\), the union of any k color classes induces a \((k-1)\)-degenerate subgraph is called a degenerate coloring; a proper coloring of a graph with no two-colored \(P_{4}\) is called a star coloring. If a coloring is both degenerate and star, then we call it a degenerate star coloring of graph. The corresponding chromatic number is denoted as \(\chi _{sd}(G)\). In this paper, we employ entropy compression method to obtain a new upper bound \(\chi _{sd}(G)\le \lceil \frac{19}{6}\Delta ^{\frac{3}{2}}+5\Delta \rceil \) for general graph G.  相似文献   
886.
An edge irregular total k-labeling \(\varphi : V\cup E \rightarrow \{ 1,2, \dots , k \}\) of a graph \(G=(V,E)\) is a labeling of vertices and edges of G in such a way that for any different edges xy and \(x'y'\) their weights \(\varphi (x)+ \varphi (xy) + \varphi (y)\) and \(\varphi (x')+ \varphi (x'y') + \varphi (y')\) are distinct. The total edge irregularity strength, tes(G), is defined as the minimum k for which G has an edge irregular total k-labeling. We have determined the exact value of the total edge irregularity strength of accordion graphs.  相似文献   
887.
For an integer \(k \ge 1\), a distance k-dominating set of a connected graph G is a set S of vertices of G such that every vertex of V(G) is at distance at most k from some vertex of S. The distance k-domination number \(\gamma _k(G)\) of G is the minimum cardinality of a distance k-dominating set of G. In this paper, we establish an upper bound on the distance k-domination number of a graph in terms of its order, minimum degree and maximum degree. We prove that for \(k \ge 2\), if G is a connected graph with minimum degree \(\delta \ge 2\) and maximum degree \(\Delta \) and of order \(n \ge \Delta + k - 1\), then \(\gamma _k(G) \le \frac{n + \delta - \Delta }{\delta + k - 1}\). This result improves existing known results.  相似文献   
888.
A universal labeling of a graph G is a labeling of the edge set in G such that in every orientation \(\ell \) of G for every two adjacent vertices v and u, the sum of incoming edges of v and u in the oriented graph are different from each other. The universal labeling number of a graph G is the minimum number k such that G has universal labeling from \(\{1,2,\ldots , k\}\) denoted it by \(\overrightarrow{\chi _{u}}(G) \). We have \(2\Delta (G)-2 \le \overrightarrow{\chi _{u}} (G)\le 2^{\Delta (G)}\), where \(\Delta (G)\) denotes the maximum degree of G. In this work, we offer a provocative question that is: “Is there any polynomial function f such that for every graph G, \(\overrightarrow{\chi _{u}} (G)\le f(\Delta (G))\)?”. Towards this question, we introduce some lower and upper bounds on their parameter of interest. Also, we prove that for every tree T, \(\overrightarrow{\chi _{u}}(T)={\mathcal {O}}(\Delta ^3) \). Next, we show that for a given 3-regular graph G, the universal labeling number of G is 4 if and only if G belongs to Class 1. Therefore, for a given 3-regular graph G, it is an \( {{\mathbf {N}}}{{\mathbf {P}}} \)-complete to determine whether the universal labeling number of G is 4. Finally, using probabilistic methods, we almost confirm a weaker version of the problem.  相似文献   
889.
Graph pebbling is a network model for studying whether or not a given supply of discrete pebbles can satisfy a given demand via pebbling moves. A pebbling move across an edge of a graph takes two pebbles from one endpoint and places one pebble at the other endpoint; the other pebble is lost in transit as a toll. It has been shown that deciding whether a supply can meet a demand on a graph is NP-complete. The pebbling number of a graph is the smallest t such that every supply of t pebbles can satisfy every demand of one pebble byt a vertex. Deciding if the pebbling number is at most k is \(\Pi _2^\mathsf{P}\)-complete. In this paper we develop a tool, called the Weight Function Lemma, for computing upper bounds and sometimes exact values for pebbling numbers with the assistance of linear optimization. With this tool we are able to calculate the pebbling numbers of much larger graphs than in previous algorithms, and much more quickly as well. We also obtain results for many families of graphs, in many cases by hand, with much simpler and remarkably shorter proofs than given in previously existing arguments (certificates typically of size at most the number of vertices times the maximum degree), especially for highly symmetric graphs. Here we apply the Weight Function Lemma to several specific graphs, including the Petersen, Lemke, \(4\mathrm{th}\) weak Bruhat, and Lemke squared, as well as to a number of infinite families of graphs, such as trees, cycles, graph powers of cycles, cubes, and some generalized Petersen and Coxeter graphs. In doing so we partly answer a question of Pachter, et al., by computing the pebbling exponent of cycles to within an asymptotically small range. It is conceivable that this method yields an approximation algorithm for graph pebbling.  相似文献   
890.
This study considers an evacuation problem where the evacuees try to escape to the boundary of an affected area, which is convex, and a grid network is embedded in the area. The boundary is unknown to the evacuees and we propose an online evacuation strategy based on the Fibonacci sequence. This strategy is proved to have a competitive ratio of 19.5, which is better than the best previously reported result of 21.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号