排序方式: 共有23条查询结果,搜索用时 5 毫秒
21.
Ultra‐high‐frequency data is defined to be a full record of transactions and their associated characteristics. The transaction arrival times and accompanying measures can be analyzed as marked point processes. The ACD point process developed by Engle and Russell (1998) is applied to IBM transactions arrival times to develop semiparametric hazard estimates and conditional intensities. Combining these intensities with a GARCH model of prices produces ultra‐high‐frequency measures of volatility. Both returns and variances are found to be negatively influenced by long durations as suggested by asymmetric information models of market micro‐structure. 相似文献
22.
A new covariance matrix estimator is proposed under the assumption that at every time period all pairwise correlations are equal. This assumption, which is pragmatically applied in various areas of finance, makes it possible to estimate arbitrarily large covariance matrices with ease. The model, called DECO, involves first adjusting for individual volatilities and then estimating correlations. A quasi-maximum likelihood result shows that DECO provides consistent parameter estimates even when the equicorrelation assumption is violated. We demonstrate how to generalize DECO to block equicorrelation structures. DECO estimates for U.S. stock return data show that (block) equicorrelated models can provide a better fit of the data than DCC. Using out-of-sample forecasts, DECO and Block DECO are shown to improve portfolio selection compared to an unrestricted dynamic correlation structure. 相似文献
23.