首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6663篇
  免费   167篇
  国内免费   3篇
管理学   1007篇
民族学   59篇
人才学   9篇
人口学   521篇
丛书文集   50篇
理论方法论   822篇
综合类   52篇
社会学   3470篇
统计学   843篇
  2023年   45篇
  2022年   31篇
  2021年   51篇
  2020年   122篇
  2019年   174篇
  2018年   205篇
  2017年   209篇
  2016年   212篇
  2015年   147篇
  2014年   175篇
  2013年   1050篇
  2012年   234篇
  2011年   248篇
  2010年   200篇
  2009年   159篇
  2008年   206篇
  2007年   227篇
  2006年   215篇
  2005年   230篇
  2004年   196篇
  2003年   174篇
  2002年   177篇
  2001年   122篇
  2000年   158篇
  1999年   128篇
  1998年   119篇
  1997年   106篇
  1996年   96篇
  1995年   88篇
  1994年   110篇
  1993年   94篇
  1992年   99篇
  1991年   69篇
  1990年   57篇
  1989年   59篇
  1988年   74篇
  1987年   55篇
  1986年   49篇
  1985年   58篇
  1984年   72篇
  1983年   57篇
  1982年   59篇
  1981年   54篇
  1980年   54篇
  1979年   45篇
  1978年   36篇
  1977年   36篇
  1976年   48篇
  1975年   31篇
  1974年   39篇
排序方式: 共有6833条查询结果,搜索用时 31 毫秒
91.
Polynomial spline regression models of low degree have proved useful in modeling responses from designed experiments in science and engineering when simple polynomial models are inadequate. Where there is uncertainty in the number and location of the knots, or breakpoints, of the spline, then designs that minimize the systematic errors resulting from model misspecification may be appropriate. This paper gives a method for constructing such all‐bias designs for a single variable spline when the distinct knots in the assumed and true models come from some specified set. A class of designs is defined in terms of the inter‐knot intervals and sufficient conditions are obtained for a design within this class to be all‐bias under linear, quadratic and cubic spline models. An example of the construction of all‐bias designs is given.  相似文献   
92.
This article proposes a new data‐based prior distribution for the error variance in a Gaussian linear regression model, when the model is used for Bayesian variable selection and model averaging. For a given subset of variables in the model, this prior has a mode that is an unbiased estimator of the error variance but is suitably dispersed to make it uninformative relative to the marginal likelihood. The advantage of this empirical Bayes prior for the error variance is that it is centred and dispersed sensibly and avoids the arbitrary specification of hyperparameters. The performance of the new prior is compared to that of a prior proposed previously in the literature using several simulated examples and two loss functions. For each example our paper also reports results for the model that orthogonalizes the predictor variables before performing subset selection. A real example is also investigated. The empirical results suggest that for both the simulated and real data, the performance of the estimators based on the prior proposed in our article compares favourably with that of a prior used previously in the literature.  相似文献   
93.
A hierarchical model for extreme wind speeds   总被引:3,自引:0,他引:3  
Summary.  A typical extreme value analysis is often carried out on the basis of simplistic inferential procedures, though the data being analysed may be structurally complex. Here we develop a hierarchical model for hourly gust maximum wind speed data, which attempts to identify site and seasonal effects for the marginal densities of hourly maxima, as well as for the serial dependence at each location. A Gaussian model for the random effects exploits the meteorological structure in the data, enabling increased precision for inferences at individual sites and in individual seasons. The Bayesian framework that is adopted is also exploited to obtain predictive return level estimates at each site, which incorporate uncertainty due to model estimation, as well as the randomness that is inherent in the processes that are involved.  相似文献   
94.
Boosting is a new, powerful method for classification. It is an iterative procedure which successively classifies a weighted version of the sample, and then reweights this sample dependent on how successful the classification was. In this paper we review some of the commonly used methods for performing boosting and show how they can be fit into a Bayesian setup at each iteration of the algorithm. We demonstrate how this formulation gives rise to a new splitting criterion when using a domain-partitioning classification method such as a decision tree. Further we can improve the predictive performance of simple decision trees, known as stumps, by using a posterior weighted average of them to classify at each step of the algorithm, rather than just a single stump. The main advantage of this approach is to reduce the number of boosting iterations required to produce a good classifier with only a minimal increase in the computational complexity of the algorithm.  相似文献   
95.
The Dirichlet process prior allows flexible nonparametric mixture modeling. The number of mixture components is not specified in advance and can grow as new data arrive. However, analyses based on the Dirichlet process prior are sensitive to the choice of the parameters, including an infinite-dimensional distributional parameter G 0. Most previous applications have either fixed G 0 as a member of a parametric family or treated G 0 in a Bayesian fashion, using parametric prior specifications. In contrast, we have developed an adaptive nonparametric method for constructing smooth estimates of G 0. We combine this method with a technique for estimating α, the other Dirichlet process parameter, that is inspired by an existing characterization of its maximum-likelihood estimator. Together, these estimation procedures yield a flexible empirical Bayes treatment of Dirichlet process mixtures. Such a treatment is useful in situations where smooth point estimates of G 0 are of intrinsic interest, or where the structure of G 0 cannot be conveniently modeled with the usual parametric prior families. Analysis of simulated and real-world datasets illustrates the robustness of this approach.  相似文献   
96.
In many domains, simple forms of classification rules are needed because of requirements such as ease of use. A particularly simple form splits each variable into just a few categories, assigns weights to the categories, sums the weights for a new object to be classified, and produces a classification by comparing the score with a threshold. Such instruments are often called scorecards. We describe a way to find the best partition of each variable using a simulated annealing strategy. We present theoretical and empirical comparisons of two such additive models, one based on weights of evidence and another based on logistic regression.  相似文献   
97.
98.
99.
Summary.  Meta-analysis in the presence of unexplained heterogeneity is frequently undertaken by using a random-effects model, in which the effects underlying different studies are assumed to be drawn from a normal distribution. Here we discuss the justification and interpretation of such models, by addressing in turn the aims of estimation, prediction and hypothesis testing. A particular issue that we consider is the distinction between inference on the mean of the random-effects distribution and inference on the whole distribution. We suggest that random-effects meta-analyses as currently conducted often fail to provide the key results, and we investigate the extent to which distribution-free, classical and Bayesian approaches can provide satisfactory methods. We conclude that the Bayesian approach has the advantage of naturally allowing for full uncertainty, especially for prediction. However, it is not without problems, including computational intensity and sensitivity to a priori judgements. We propose a simple prediction interval for classical meta-analysis and offer extensions to standard practice of Bayesian meta-analysis, making use of an example of studies of 'set shifting' ability in people with eating disorders.  相似文献   
100.
Summary.  A general method for exploring multivariate data by comparing different estimates of multivariate scatter is presented. The method is based on the eigenvalue–eigenvector decomposition of one scatter matrix relative to another. In particular, it is shown that the eigenvectors can be used to generate an affine invariant co-ordinate system for the multivariate data. Consequently, we view this method as a method for invariant co-ordinate selection . By plotting the data with respect to this new invariant co-ordinate system, various data structures can be revealed. For example, under certain independent components models, it is shown that the invariant co- ordinates correspond to the independent components. Another example pertains to mixtures of elliptical distributions. In this case, it is shown that a subset of the invariant co-ordinates corresponds to Fisher's linear discriminant subspace, even though the class identifications of the data points are unknown. Some illustrative examples are given.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号