首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6316篇
  免费   157篇
  国内免费   3篇
管理学   986篇
民族学   54篇
人才学   9篇
人口学   499篇
丛书文集   47篇
理论方法论   769篇
综合类   51篇
社会学   3261篇
统计学   800篇
  2023年   38篇
  2022年   29篇
  2021年   46篇
  2020年   113篇
  2019年   163篇
  2018年   195篇
  2017年   199篇
  2016年   202篇
  2015年   142篇
  2014年   163篇
  2013年   994篇
  2012年   222篇
  2011年   241篇
  2010年   188篇
  2009年   155篇
  2008年   191篇
  2007年   216篇
  2006年   198篇
  2005年   222篇
  2004年   193篇
  2003年   169篇
  2002年   167篇
  2001年   114篇
  2000年   150篇
  1999年   122篇
  1998年   110篇
  1997年   103篇
  1996年   94篇
  1995年   83篇
  1994年   107篇
  1993年   90篇
  1992年   96篇
  1991年   64篇
  1990年   55篇
  1989年   56篇
  1988年   68篇
  1987年   52篇
  1986年   47篇
  1985年   56篇
  1984年   67篇
  1983年   54篇
  1982年   58篇
  1981年   50篇
  1980年   51篇
  1979年   44篇
  1978年   32篇
  1977年   31篇
  1976年   46篇
  1975年   26篇
  1974年   35篇
排序方式: 共有6476条查询结果,搜索用时 15 毫秒
101.
Weighted Approximations to Continuous Time Martingales with Applications   总被引:1,自引:0,他引:1  
A weighted approximation to a sequence of continuous time martingales by a time transformed Wiener process is established. The basic tool of proof is the Skorohod imbedding for martingale difference sequences. As an application of the main result a useful weighted approximation to the randomly weighted uniform empirical process is derived. A number of other applications are also discussed.  相似文献   
102.
Boosting is a new, powerful method for classification. It is an iterative procedure which successively classifies a weighted version of the sample, and then reweights this sample dependent on how successful the classification was. In this paper we review some of the commonly used methods for performing boosting and show how they can be fit into a Bayesian setup at each iteration of the algorithm. We demonstrate how this formulation gives rise to a new splitting criterion when using a domain-partitioning classification method such as a decision tree. Further we can improve the predictive performance of simple decision trees, known as stumps, by using a posterior weighted average of them to classify at each step of the algorithm, rather than just a single stump. The main advantage of this approach is to reduce the number of boosting iterations required to produce a good classifier with only a minimal increase in the computational complexity of the algorithm.  相似文献   
103.
104.
105.
In many applications in applied statistics, researchers reduce the complexity of a data set by combining a group of variables into a single measure using a factor analysis or an index number. We argue that such compression loses information if the data actually have high dimensionality. We advocate the use of a non-parametric estimator, commonly used in physics (the Takens estimator), to estimate the correlation dimension of the data prior to compression. The advantage of this approach over traditional linear data compression approaches is that the data do not have to be linearised. Applying our ideas to the United Nations Human Development Index, we find that the four variables that are used in its construction have dimension 3 and the index loses information.  相似文献   
106.
The paper introduces a new method for flexible spline fitting for copula density estimation. Spline coefficients are penalized to achieve a smooth fit. To weaken the curse of dimensionality, instead of a full tensor spline basis, a reduced tensor product based on so called sparse grids (Notes Numer. Fluid Mech. Multidiscip. Des., 31, 1991, 241‐251) is used. To achieve uniform margins of the copula density, linear constraints are placed on the spline coefficients, and quadratic programming is used to fit the model. Simulations and practical examples accompany the presentation.  相似文献   
107.
I review some key ideas and models in survival analysis with emphasis on modeling the effects of covariates on survival times. I focus on the proportional hazards model of Cox (J R Stat Soc B 34:187–220, 1972), its extensions and alternatives, including the accelerated life model. I briefly describe some models for competing risks data, multiple and repeated event-time data and multivariate survival data.  相似文献   
108.
109.
The empirical likelihood (EL) technique has been well addressed in both the theoretical and applied literature in the context of powerful nonparametric statistical methods for testing and interval estimations. A nonparametric version of Wilks theorem (Wilks, 1938 Wilks , S. S. ( 1938 ). The large-sample distribution of the likelihood ratio for testing composite hypotheses . Annals of Mathematical Statistics 9 : 6062 .[Crossref] [Google Scholar]) can usually provide an asymptotic evaluation of the Type I error of EL ratio-type tests. In this article, we examine the performance of this asymptotic result when the EL is based on finite samples that are from various distributions. In the context of the Type I error control, we show that the classical EL procedure and the Student's t-test have asymptotically a similar structure. Thus, we conclude that modifications of t-type tests can be adopted to improve the EL ratio test. We propose the application of the Chen (1995 Chen , L. ( 1995 ). Testing the mean of skewed distributions . Journal of the American Statistical Association 90 : 767772 .[Taylor & Francis Online], [Web of Science ®] [Google Scholar]) t-test modification to the EL ratio test. We display that the Chen approach leads to a location change of observed data whereas the classical Bartlett method is known to be a scale correction of the data distribution. Finally, we modify the EL ratio test via both the Chen and Bartlett corrections. We support our argument with theoretical proofs as well as a Monte Carlo study. A real data example studies the proposed approach in practice.  相似文献   
110.
While Markov chain Monte Carlo (MCMC) methods are frequently used for difficult calculations in a wide range of scientific disciplines, they suffer from a serious limitation: their samples are not independent and identically distributed. Consequently, estimates of expectations are biased if the initial value of the chain is not drawn from the target distribution. Regenerative simulation provides an elegant solution to this problem. In this article, we propose a simple regenerative MCMC algorithm to generate variates for any distribution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号