排序方式: 共有12条查询结果,搜索用时 0 毫秒
11.
Wang L Rotnitzky A Lin X Millikan RE Thall PF 《Journal of the American Statistical Association》2012,107(498):493-508
We present new statistical analyses of data arising from a clinical trial designed to compare two-stage dynamic treatment regimes (DTRs) for advanced prostate cancer. The trial protocol mandated that patients were to be initially randomized among four chemotherapies, and that those who responded poorly were to be rerandomized to one of the remaining candidate therapies. The primary aim was to compare the DTRs' overall success rates, with success defined by the occurrence of successful responses in each of two consecutive courses of the patient's therapy. Of the one hundred and fifty study participants, forty seven did not complete their therapy per the algorithm. However, thirty five of them did so for reasons that precluded further chemotherapy; i.e. toxicity and/or progressive disease. Consequently, rather than comparing the overall success rates of the DTRs in the unrealistic event that these patients had remained on their assigned chemotherapies, we conducted an analysis that compared viable switch rules defined by the per-protocol rules but with the additional provision that patients who developed toxicity or progressive disease switch to a non-prespecified therapeutic or palliative strategy. This modification involved consideration of bivariate per-course outcomes encoding both efficacy and toxicity. We used numerical scores elicited from the trial's Principal Investigator to quantify the clinical desirability of each bivariate per-course outcome, and defined one endpoint as their average over all courses of treatment. Two other simpler sets of scores as well as log survival time also were used as endpoints. Estimation of each DTR-specific mean score was conducted using inverse probability weighted methods that assumed that missingness in the twelve remaining drop-outs was informative but explainable in that it only depended on past recorded data. We conducted additional worst-best case analyses to evaluate sensitivity of our findings to extreme departures from the explainable drop-out assumption. 相似文献
12.
Jolene Birmingham rea Rotnitzky Garrett M. Fitzmaurice 《Journal of the Royal Statistical Society. Series B, Statistical methodology》2003,65(1):275-297
Summary. We examine three pattern–mixture models for making inference about parameters of the distribution of an outcome of interest Y that is to be measured at the end of a longitudinal study when this outcome is missing in some subjects. We show that these pattern–mixture models also have an interpretation as selection models. Because these models make unverifiable assumptions, we recommend that inference about the distribution of Y be repeated under a range of plausible assumptions. We argue that, of the three models considered, only one admits a parameterization that facilitates the examination of departures from the assumption of sequential ignorability. The three models are nonparametric in the sense that they do not impose restrictions on the class of observed data distributions. Owing to the curse of dimensionality, the assumptions that are encoded in these models are sufficient for identification but not for inference. We describe additional flexible and easily interpretable assumptions under which it is possible to construct estimators that are well behaved with moderate sample sizes. These assumptions define semiparametric models for the distribution of the observed data. We describe a class of estimators which, up to asymptotic equivalence, comprise all the consistent and asymptotically normal estimators of the parameters of interest under the postulated semiparametric models. We illustrate our methods with the analysis of data from a randomized clinical trial of contracepting women. 相似文献