首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3861篇
  免费   76篇
  国内免费   14篇
管理学   180篇
民族学   1篇
人口学   38篇
丛书文集   21篇
理论方法论   17篇
综合类   318篇
社会学   24篇
统计学   3352篇
  2024年   1篇
  2023年   21篇
  2022年   35篇
  2021年   23篇
  2020年   69篇
  2019年   146篇
  2018年   160篇
  2017年   266篇
  2016年   124篇
  2015年   80篇
  2014年   110篇
  2013年   1146篇
  2012年   345篇
  2011年   94篇
  2010年   115篇
  2009年   132篇
  2008年   117篇
  2007年   88篇
  2006年   90篇
  2005年   87篇
  2004年   74篇
  2003年   59篇
  2002年   66篇
  2001年   61篇
  2000年   57篇
  1999年   59篇
  1998年   53篇
  1997年   42篇
  1996年   23篇
  1995年   20篇
  1994年   26篇
  1993年   19篇
  1992年   23篇
  1991年   8篇
  1990年   15篇
  1989年   9篇
  1988年   17篇
  1987年   8篇
  1986年   6篇
  1985年   4篇
  1984年   12篇
  1983年   13篇
  1982年   6篇
  1981年   5篇
  1980年   1篇
  1979年   6篇
  1978年   5篇
  1977年   2篇
  1975年   2篇
  1973年   1篇
排序方式: 共有3951条查询结果,搜索用时 78 毫秒
101.
M-quantile regression is defined as a “quantile-like” generalization of robust regression based on influence functions. This article outlines asymptotic properties for the M-quantile regression coefficients estimators in the case of i.i.d. data with stochastic regressors, paying attention to adjustments due to the first-step scale estimation. A variance estimator of the M-quantile regression coefficients based on the sandwich approach is proposed. Empirical results show that this estimator appears to perform well under different simulated scenarios. The sandwich estimator is applied in the small area estimation context for the estimation of the mean squared error of an estimator for the small area means. The results obtained improve previous findings, especially in the case of heteroskedastic data.  相似文献   
102.
In this paper, we estimate multicomponent stress-strength reliability by assuming Burr-XII distribution. The research methodology adopted here is to estimate the parameter using maximum likelihood estimation. Reliability is estimated using the maximum likelihood method of estimation and results are compared using the Monte Carlo simulation for small samples. Using real data sets we illustrate the procedure clearly.  相似文献   
103.
Here, we consider wavelet based estimation of the derivatives of a probability density function under random sampling from a weighted distribution and extend the results regarding the asymptotic convergence rates under the i.i.d. setup studied in Prakasa Rao (1996 Rao, B. L.S. (1996). Nonparametric estimation of the derivatives of a density by the method of wavelets. Bull. Inform. Cybernat. 28:91100. [Google Scholar]) to the biased-data setup. We compare the performance of the wavelet based estimator with that of the kernel based estimator obtained by differentiating the Efromovich (2004 Efromovich, S. (2004). Density estimation for biased data. Ann. Statist. 32:11371161.[Crossref], [Web of Science ®] [Google Scholar]) kernel density estimator through a simulation study.  相似文献   
104.
ABSTRACT

Every large census operation should undergo evaluation programs to find the sources and extent of inherent coverage errors. In this article, we briefly discuss the statistical methodology to estimate the omission rate in Indian census using dual-system estimation (DSE) technique. We have explicitly studied the correlation bias factor involved in the estimate, its extent, and consequences. A new potential source of bias in the estimate is identified and discussed. During the survey, more efficient enumerators compared to the census operations are appointed, and this fact may inflate the dependency between two lists and lead to a significant bias. Some examples are given to demonstrate this argument in various plausible situations. We have suggested one simple and flexible approach which can control this bias. Our proposed estimator can efficiently overcome the potential bias by achieving the desired degree of accuracy (almost unbiased) with relatively higher efficiency. Overall improvements in the results are explored through simulation study on different populations.  相似文献   
105.
Abstract

We suggest shrinkage based technique for estimating covariance matrix in the high-dimensional normal model with missing data. Our approach is based on the monotone missing scheme assumption, meaning that missing values patterns occur completely at random. Our asymptotic framework allows the dimensionality p grow to infinity together with the sample size, N, and extends the methodology of Ledoit and Wolf (2004) Ledoit, O., Wolf, M. (2004). A well-conditioned estimator for large dimensional covariance matrices. J. Multivariate Anal. 88:365411.[Crossref], [Web of Science ®] [Google Scholar] to the case of two-step monotone missing data. Two new shrinkage-type estimators are derived and their dominance properties over the Ledoit and Wolf (2004) Ledoit, O., Wolf, M. (2004). A well-conditioned estimator for large dimensional covariance matrices. J. Multivariate Anal. 88:365411.[Crossref], [Web of Science ®] [Google Scholar] estimator are shown under the expected quadratic loss. We perform a simulation study and conclude that the proposed estimators are successful for a range of missing data scenarios.  相似文献   
106.
Abstract

Frailty models are used in survival analysis to account for unobserved heterogeneity in individual risks to disease and death. To analyze bivariate data on related survival times (e.g., matched pairs experiments, twin, or family data), shared frailty models were suggested. Shared frailty models are frequently used to model heterogeneity in survival analysis. The most common shared frailty model is a model in which hazard function is a product of random factor(frailty) and baseline hazard function which is common to all individuals. There are certain assumptions about the baseline distribution and distribution of frailty. In this paper, we introduce shared gamma frailty models with reversed hazard rate. We introduce Bayesian estimation procedure using Markov Chain Monte Carlo (MCMC) technique to estimate the parameters involved in the model. We present a simulation study to compare the true values of the parameters with the estimated values. Also, we apply the proposed model to the Australian twin data set.  相似文献   
107.
Abstract

In this article, we have considered the problem of estimation of population variance on current (second) occasion in two occasion successive (rotation) sampling. A class of estimators of population variance has been proposed and its asymptotic properties have been discussed. The proposed class of estimators is compared with the sample variance estimator when there is no matching from the previous occasion and the Singh et al. (2013) estimator. Optimum replacement policy is discussed. It has been shown that the suggested estimator is more efficient than the Singh et al. (2013) estimator and a usual unbiased estimator when there is no matching. An empirical study is carried out in support of the present study.  相似文献   
108.
ABSTRACT

In this article, we consider the estimation of R = P(Y < X), when Y and X are two independent three-parameter Lindley (LI) random variables. On the basis of two independent samples, the modified maximum likelihood estimator along its asymptotic behavior and conditional likelihood-based estimator are used to estimate R. We also propose sample-based estimate of R and the associated credible interval based on importance sampling procedure. A real life data set involving the times to breakdown of an insulating fluid is presented and analyzed for illustrative purposes.  相似文献   
109.
In recent years the analysis of interval-censored failure time data has attracted a great deal of attention and such data arise in many fields including demographical studies, economic and financial studies, epidemiological studies, social sciences, and tumorigenicity experiments. This is especially the case in medical studies such as clinical trials. In this article, we discuss regression analysis of one type of such data, Case I interval-censored data, in the presence of left-truncation. For the problem, the additive hazards model is employed and the maximum likelihood method is applied for estimations of unknown parameters. In particular, we adopt the sieve estimation approach that approximates the baseline cumulative hazard function by linear functions. The resulting estimates of regression parameters are shown to be consistent and efficient and have an asymptotic normal distribution. An illustrative example is provided.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号