首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   207篇
  免费   31篇
管理学   140篇
理论方法论   1篇
综合类   14篇
统计学   83篇
  2023年   10篇
  2022年   1篇
  2021年   8篇
  2020年   7篇
  2019年   5篇
  2018年   6篇
  2017年   13篇
  2016年   6篇
  2015年   11篇
  2014年   9篇
  2013年   15篇
  2012年   15篇
  2011年   12篇
  2010年   5篇
  2009年   4篇
  2008年   12篇
  2007年   6篇
  2006年   10篇
  2005年   9篇
  2004年   10篇
  2003年   4篇
  2002年   5篇
  2001年   2篇
  2000年   5篇
  1999年   7篇
  1998年   6篇
  1997年   4篇
  1996年   4篇
  1995年   4篇
  1994年   5篇
  1993年   4篇
  1992年   1篇
  1991年   1篇
  1990年   4篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
排序方式: 共有238条查询结果,搜索用时 31 毫秒
201.
We are concerned with the problem of estimating the treatment effects at the effective doses in a dose-finding study. Under monotone dose-response, the effective doses can be identified through the estimation of the minimum effective dose, for which there is an extensive set of statistical tools. In particular, when a fixed-sequence multiple testing procedure is used to estimate the minimum effective dose, Hsu and Berger (1999) show that the confidence lower bounds for the treatment effects can be constructed without the need to adjust for multiplicity. Their method, called the dose-response method, is simple to use, but does not account for the magnitude of the observed treatment effects. As a result, the dose-response method will estimate the treatment effects at effective doses with confidence bounds invariably identical to the hypothesized value. In this paper, we propose an error-splitting method as a variant of the dose-response method to construct confidence bounds at the identified effective doses after a fixed-sequence multiple testing procedure. Our proposed method has the virtue of simplicity as in the dose-response method, preserves the nominal coverage probability, and provides sharper bounds than the dose-response method in most cases.  相似文献   
202.
Roger Cooke 《Risk analysis》2010,30(3):330-339
The practice of uncertainty factors as applied to noncancer endpoints in the IRIS database harkens back to traditional safety factors. In the era before risk quantification, these were used to build in a “margin of safety.” As risk quantification takes hold, the safety factor methods yield to quantitative risk calculations to guarantee safety. Many authors believe that uncertainty factors can be given a probabilistic interpretation as ratios of response rates, and that the reference values computed according to the IRIS methodology can thus be converted to random variables whose distributions can be computed with Monte Carlo methods, based on the distributions of the uncertainty factors. Recent proposals from the National Research Council echo this view. Based on probabilistic arguments, several authors claim that the current practice of uncertainty factors is overprotective. When interpreted probabilistically, uncertainty factors entail very strong assumptions on the underlying response rates. For example, the factor for extrapolating from animal to human is the same whether the dosage is chronic or subchronic. Together with independence assumptions, these assumptions entail that the covariance matrix of the logged response rates is singular. In other words, the accumulated assumptions entail a log‐linear dependence between the response rates. This in turn means that any uncertainty analysis based on these assumptions is ill‐conditioned; it effectively computes uncertainty conditional on a set of zero probability. The practice of uncertainty factors is due for a thorough review. Two directions are briefly sketched, one based on standard regression models, and one based on nonparametric continuous Bayesian belief nets.  相似文献   
203.
Charles N. Haas 《Risk analysis》2011,31(10):1576-1596
Human Brucellosis is one of the most common zoonotic diseases worldwide. Disease transmission often occurs through the handling of domestic livestock, as well as ingestion of unpasteurized milk and cheese, but can have enhanced infectivity if aerosolized. Because there is no human vaccine available, rising concerns about the threat of Brucellosis to human health and its inclusion in the Center for Disease Control's Category B Bioterrorism/Select Agent List make a better understanding of the dose‐response relationship of this microbe necessary. Through an extensive peer‐reviewed literature search, candidate dose‐response data were appraised so as to surpass certain standards for quality. The statistical programming language, “R,” was used to compute the maximum likelihood estimation to fit two models, the exponential and the approximate beta‐Poisson (widely used for quantitative risk assessment) to dose‐response data. Dose‐response models were generated for prevalent species of Brucella: Br. suis, Br. melitensis, and Br. abortus. Dose‐response models were created for aerosolized Br. suis exposure to guinea pigs from pooled studies. A parallel model for guinea pigs inoculated through both aerosol and subcutaneous routes with Br. melitensis showed that the median infectious dose corresponded to a 30 colony‐forming units (CFU) dose of Br. suis, much less than the N50 dose of about 94 CFU for Br. melitensis organisms. When Br. melitensis was tested subcutaneously on mice, the N50 dose was higher, 1,840 CFU. A dose‐response model was constructed from pooled data for mice, rhesus macaques, and humans inoculated through three routes (subcutaneously/aerosol/intradermally) with Br. melitensis.  相似文献   
204.
Weng Kee Wong 《Risk analysis》2011,31(12):1949-1960
Hormesis is a widely observed phenomenon in many branches of life sciences, ranging from toxicology studies to agronomy, with obvious public health and risk assessment implications. We address optimal experimental design strategies for determining the presence of hormesis in a controlled environment using the recently proposed Hunt‐Bowman model. We propose alternative models that have an implicit hormetic threshold, discuss their advantages over current models, and construct and study properties of optimal designs for (i) estimating model parameters, (ii) estimating the threshold dose, and (iii) testing for the presence of hormesis. We also determine maximin optimal designs that maximize the minimum of the design efficiencies when we have multiple design criteria or there is model uncertainty where we have a few plausible models of interest. We apply these optimal design strategies to a teratology study and show that the proposed designs outperform the implemented design by a wide margin for many situations.  相似文献   
205.
Mitchell J. Small 《Risk analysis》2011,31(10):1561-1575
A methodology is presented for assessing the information value of an additional dosage experiment in existing bioassay studies. The analysis demonstrates the potential reduction in the uncertainty of toxicity metrics derived from expanded studies, providing insights for future studies. Bayesian methods are used to fit alternative dose‐response models using Markov chain Monte Carlo (MCMC) simulation for parameter estimation and Bayesian model averaging (BMA) is used to compare and combine the alternative models. BMA predictions for benchmark dose (BMD) are developed, with uncertainty in these predictions used to derive the lower bound BMDL. The MCMC and BMA results provide a basis for a subsequent Monte Carlo analysis that backcasts the dosage where an additional test group would have been most beneficial in reducing the uncertainty in the BMD prediction, along with the magnitude of the expected uncertainty reduction. Uncertainty reductions are measured in terms of reduced interval widths of predicted BMD values and increases in BMDL values that occur as a result of this reduced uncertainty. The methodology is illustrated using two existing data sets for TCDD carcinogenicity, fitted with two alternative dose‐response models (logistic and quantal‐linear). The example shows that an additional dose at a relatively high value would have been most effective for reducing the uncertainty in BMA BMD estimates, with predicted reductions in the widths of uncertainty intervals of approximately 30%, and expected increases in BMDL values of 5–10%. The results demonstrate that dose selection for studies that subsequently inform dose‐response models can benefit from consideration of how these models will be fit, combined, and interpreted.  相似文献   
206.
Invasive aspergillosis (IA) is a major cause of mortality in immunocompromized hosts, most often consecutive to the inhalation of spores of Aspergillus. However, the relationship between Aspergillus concentration in the air and probability of IA is not quantitatively known. In this study, this relationship was examined in a murine model of IA. Immunosuppressed Balb/c mice were exposed for 60 minutes at day 0 to an aerosol of A. fumigatus spores (Af293 strain). At day 10, IA was assessed in mice by quantitative culture of the lungs and galactomannan dosage. Fifteen separate nebulizations with varying spore concentrations were performed. Rates of IA ranged from 0% to 100% according to spore concentrations. The dose‐response relationship between probability of infection and spore exposure was approximated using the exponential model and the more flexible beta‐Poisson model. Prior distributions of the parameters of the models were proposed then updated with data in a Bayesian framework. Both models yielded close median dose‐responses of the posterior distributions for the main parameter of the model, but with different dispersions, either when the exposure dose was the concentration in the nebulized suspension or was the estimated quantity of spores inhaled by a mouse during the experiment. The median quantity of inhaled spores that infected 50% of mice was estimated at 1.8 × 104 and 3.2 × 104 viable spores in the exponential and beta‐Poisson models, respectively. This study provides dose‐response parameters for quantitative assessment of the relationship between airborne exposure to the reference A. fumigatus strain and probability of IA in immunocompromized hosts.  相似文献   
207.
水稻种衣剂禾盛 3号包衣后对种子室内发芽率有一定的抑制作用 ,浓度越大 ,发芽率降低越多 ,对秧苗素质和收获产量有一定的促进作用 ,特别是对苗期稻蓟马危害的防治 ,效果明显 ,达 79.7%~ 95 .8% ,使用浓度以药种质量比 1∶5 0或 1∶2 5的效果较好  相似文献   
208.
Recent innovative statistical approaches for phase I/II clinical trials allow one to jointly model the toxicity and efficacy of a new treatment, taking into account the information gathered during the trial. Prior probabilities are then updated with interim data and thus predictive probabilities become more accurate as the trial progresses. In this study, prior distribution elicited from a physician's opinion on the available dose levels planned for a vaccination dose-finding trial, with human DNA in patients with HER2-positive tumours in terms of toxicity and therapeutic response is presented and discussed. A simulation study was conducted in order to quantify the impact of the choice of prior on study results, i.e. the recommended dose level at the end of the trial.  相似文献   
209.
We consider the construction of designs for the extrapolation of regression responses, allowing both for possible heteroscedasticity in the errors and for imprecision in the specification of the response function. We find minimax designs and correspondingly optimal estimation weights in the context of the following problems: (1) for ordinary least squares estimation, determine a design to minimize the maximum value of the integrated mean squared prediction error (IMSPE), with the maximum being evaluated over both types of departure; (2) for weighted least squares estimation, determine both weights and a design to minimize the maximum IMSPE; (3) choose weights and design points to minimize the maximum IMSPE, subject to a side condition of unbiasedness. Solutions to (1) and (2) are given for multiple linear regression with no interactions, a spherical design space and an annular extrapolation space. For (3) the solution is given in complete generality; as one example we consider polynomial regression. Applications to a dose-response problem for bioassays are discussed. Numerical comparisons, including a simulation study, indicate that, as well as being easily implemented, the designs and weights for (3) perform as well as those for (1) and (2) and outperform some common competitors for moderate but undetectable amounts of model bias.  相似文献   
210.
When pathogenic microorganisms enter the human body via ingestion with food or drinking water, they encounter a system of barriers mounted by the host. In order to reach parts of the intestinal tract that are suitable for growth and attachment, each of the barriers must be overcome successfully. The present view on infection states that at least one of the ingested pathogens must survive to start colonization. This is the basis for dose response models, used for quantitative risk assessment. In this paper, the usefulness of the Beta Poisson model for multiple barriers is corroborated. Infection is associated with the presence of elevated numbers of reproducing pathogens in the intestinal tract. This does not necessarily imply illness symptoms: when intestinal microorganisms engage in damaging activities, this may lead to illness symptoms. At the same time, these activities probably elicit defensive measures from the host, promoting the removal of pathogens and terminating infection. The duration of the period of colonization reflects the balance between the colonization potential of pathogens and the strength of host defenses. Starting from the assumption that during infection the host has a certain hazard of becoming ill, a simple dose response relation for acute gastroenteritis is developed. With the use of literature data from volunteer experiments, we show that examples can be found for three possible alternatives: an increase in the probability of illness with increasing dose, a decrease with higher doses, and a probability of illness (given infection) independent of the ingested dose. These alternatives may reflect different modes of interaction between pathogens and host.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号