首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   989篇
  免费   29篇
  国内免费   5篇
管理学   88篇
民族学   3篇
人口学   25篇
丛书文集   33篇
理论方法论   68篇
综合类   128篇
社会学   143篇
统计学   535篇
  2025年   1篇
  2024年   8篇
  2023年   25篇
  2022年   4篇
  2021年   14篇
  2020年   45篇
  2019年   44篇
  2018年   49篇
  2017年   49篇
  2016年   40篇
  2015年   25篇
  2014年   30篇
  2013年   222篇
  2012年   113篇
  2011年   37篇
  2010年   35篇
  2009年   24篇
  2008年   33篇
  2007年   25篇
  2006年   23篇
  2005年   29篇
  2004年   25篇
  2003年   18篇
  2002年   16篇
  2001年   19篇
  2000年   10篇
  1999年   12篇
  1998年   11篇
  1997年   6篇
  1996年   3篇
  1995年   2篇
  1994年   3篇
  1991年   1篇
  1990年   3篇
  1989年   1篇
  1988年   4篇
  1987年   2篇
  1985年   1篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
排序方式: 共有1023条查询结果,搜索用时 15 毫秒
51.
Social scientists often estimate models from correlational data, where the independent variable has not been exogenously manipulated; they also make implicit or explicit causal claims based on these models. When can these claims be made? We answer this question by first discussing design and estimation conditions under which model estimates can be interpreted, using the randomized experiment as the gold standard. We show how endogeneity – which includes omitted variables, omitted selection, simultaneity, common-method variance, and measurement error – renders estimates causally uninterpretable. Second, we present methods that allow researchers to test causal claims in situations where randomization is not possible or when causal interpretation could be confounded; these methods include fixed-effects panel, sample selection, instrumental variable, regression discontinuity, and difference-in-differences models. Third, we take stock of the methodological rigor with which causal claims are being made in a social sciences discipline by reviewing a representative sample of 110 articles on leadership published in the previous 10 years in top-tier journals. Our key finding is that researchers fail to address at least 66% and up to 90% of design and estimation conditions that make causal claims invalid. We conclude by offering 10 suggestions on how to improve non-experimental research.  相似文献   
52.
In this paper, we propose a simple bias–reduced log–periodogram regression estimator, ^dr, of the long–memory parameter, d, that eliminates the first– and higher–order biases of the Geweke and Porter–Hudak (1983) (GPH) estimator. The bias–reduced estimator is the same as the GPH estimator except that one includes frequencies to the power 2k for k=1,…,r, for some positive integer r, as additional regressors in the pseudo–regression model that yields the GPH estimator. The reduction in bias is obtained using assumptions on the spectrum only in a neighborhood of the zero frequency. Following the work of Robinson (1995b) and Hurvich, Deo, and Brodsky (1998), we establish the asymptotic bias, variance, and mean–squared error (MSE) of ^dr, determine the asymptotic MSE optimal choice of the number of frequencies, m, to include in the regression, and establish the asymptotic normality of ^dr. These results show that the bias of ^dr goes to zero at a faster rate than that of the GPH estimator when the normalized spectrum at zero is sufficiently smooth, but that its variance only is increased by a multiplicative constant. We show that the bias–reduced estimator ^dr attains the optimal rate of convergence for a class of spectral densities that includes those that are smooth of order s≥1 at zero when r≥(s−2)/2 and m is chosen appropriately. For s>2, the GPH estimator does not attain this rate. The proof uses results of Giraitis, Robinson, and Samarov (1997). We specify a data–dependent plug–in method for selecting the number of frequencies m to minimize asymptotic MSE for a given value of r. Some Monte Carlo simulation results for stationary Gaussian ARFIMA (1, d, 1) and (2, d, 0) models show that the bias–reduced estimators perform well relative to the standard log–periodogram regression estimator.  相似文献   
53.
In this paper, we propose a method of estimation of parameters and quantiles of the three-parameter gamma distribution based on Type-II right-censored data. In the proposed method, under mild conditions, the estimates always exist uniquely, and the estimators have consistency over the entire parameter space. Through Monte Carlo simulations, we further show that the proposed method performs well compared with another prominent method of estimation in terms of bias and root mean-squared error in small-sample situations. Finally, two real data sets are used for illustrating the proposed method.  相似文献   
54.
In this paper, we propose a new method of estimation for the parameters and quantiles of the three-parameter Weibull distribution based on Type-II right censored data. The method, based on a data transformation, overcomes the problem of unbounded likelihood. In the proposed method, under mild conditions, the estimates always exist uniquely, and the estimators are also consistent over the entire parameter space. Through Monte Carlo simulations, we further show that the proposed method of estimation performs well compared to some prominent methods in terms of bias and root mean squared error in small-sample situations. Finally, two real data sets are used to illustrate the proposed method of estimation.  相似文献   
55.
《统计学通讯:理论与方法》2012,41(13-14):2394-2404
Sousa et al. (2010 Sousa , R. , Shabbir , J. , Real , P. C. , Gupta , S. ( 2010 ). Ratio estimation of the mean of a sensitive variable in the presence of auxiliary information . J. Statist. Theor. Prac. 4 ( 3 ): 495507 .[Taylor & Francis Online] [Google Scholar]) introduced a ratio estimator for the mean of a sensitive variable and showed that this estimator performs better than the ordinary mean estimator based on a randomized response technique (RRT). In this article, we introduce a regression estimator that performs better than the ratio estimator even for modest correlation between the primary and the auxiliary variables. The underlying assumption is that the primary variable is sensitive in nature but a non sensitive auxiliary variable exists that is positively correlated with the primary variable. Expressions for the Bias and MSE (Mean Square Error) are derived based on the first order of approximation. It is shown that the proposed regression estimator performs better than the ratio estimator and the ordinary RRT mean estimator (that does not utilize the auxiliary information). We also consider a generalized regression-cum-ratio estimator that has even smaller MSE. An extensive simulation study is presented to evaluate the performances of the proposed estimators in relation to other estimators in the study. The procedure is also applied to some financial data: purchase orders (a sensitive variable) and gross turnover (a non sensitive variable) in 2009 for a population of 5,336 companies in Portugal from a survey on Information and Communication Technologies (ICT) usage.  相似文献   
56.
This paper examines the use of bootstrapping for bias correction and calculation of confidence intervals (CIs) for a weighted nonlinear quantile regression estimator adjusted to the case of longitudinal data. Different weights and types of CIs are used and compared by computer simulation using a logistic growth function and error terms following an AR(1) model. The results indicate that bias correction reduces the bias of a point estimator but fails for CI calculations. A bootstrap percentile method and a normal approximation method perform well for two weights when used without bias correction. Taking both coverage and lengths of CIs into consideration, a non-bias-corrected percentile method with an unweighted estimator performs best.  相似文献   
57.
We propose a strongly root-n consistent simulation-based estimator for the generalized linear mixed models. This estimator is constructed based on the first two marginal moments of the response variables, and it allows the random effects to have any parametric distribution (not necessarily normal). Consistency and asymptotic normality for the proposed estimator are derived under fairly general regularity conditions. We also demonstrate that this estimator has a bounded influence function and that it is robust against data outliers. A bias correction technique is proposed to reduce the finite sample bias in the estimation of variance components. The methodology is illustrated through an application to the famed seizure count data and some simulation studies.  相似文献   
58.
Summary.  Efron's biased coin design is a well-known randomization technique that helps to neutralize selection bias in sequential clinical trials for comparing treatments, while keeping the experiment fairly balanced. Extensions of the biased coin design have been proposed by several researchers who have focused mainly on the large sample properties of their designs. We modify Efron's procedure by introducing an adjustable biased coin design, which is more flexible than his. We compare it with other existing coin designs; in terms of balance and lack of predictability, its performance for small samples appears in many cases to be an improvement with respect to the other sequential randomized allocation procedures.  相似文献   
59.
This paper suggests censored maximum likelihood estimators for the first‐ and second‐order parameters of a heavy‐tailed distribution by incorporating the second‐order regular variation into the censored likelihood function. This approach is different from the bias‐reduced maximum likelihood method proposed by Feuerverger and Hall in 1999. The paper derives the joint asymptotic limit for the first‐ and second‐order parameters under a weaker assumption. The paper also demonstrates through a simulation study that the suggested estimator for the first‐order parameter is better than the estimator proposed by Feuerverger and Hall although these two estimators have the same asymptotic variances.  相似文献   
60.
Demonstrated equivalence between a categorical regression model based on case‐control data and an I‐sample semiparametric selection bias model leads to a new goodness‐of‐fit test. The proposed test statistic is an extension of an existing Kolmogorov–Smirnov‐type statistic and is the weighted average of the absolute differences between two estimated distribution functions in each response category. The paper establishes an optimal property for the maximum semiparametric likelihood estimator of the parameters in the I‐sample semiparametric selection bias model. It also presents a bootstrap procedure, some simulation results and an analysis of two real datasets.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号