首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2816篇
  免费   46篇
  国内免费   3篇
管理学   45篇
人口学   11篇
丛书文集   3篇
理论方法论   3篇
综合类   79篇
社会学   7篇
统计学   2717篇
  2023年   10篇
  2022年   7篇
  2021年   21篇
  2020年   47篇
  2019年   83篇
  2018年   124篇
  2017年   214篇
  2016年   73篇
  2015年   76篇
  2014年   92篇
  2013年   1080篇
  2012年   254篇
  2011年   65篇
  2010年   64篇
  2009年   58篇
  2008年   48篇
  2007年   53篇
  2006年   31篇
  2005年   47篇
  2004年   42篇
  2003年   35篇
  2002年   39篇
  2001年   32篇
  2000年   26篇
  1999年   29篇
  1998年   37篇
  1997年   31篇
  1996年   16篇
  1995年   11篇
  1994年   7篇
  1993年   10篇
  1992年   8篇
  1991年   7篇
  1990年   11篇
  1989年   6篇
  1988年   12篇
  1987年   3篇
  1986年   1篇
  1985年   11篇
  1984年   5篇
  1983年   16篇
  1982年   4篇
  1981年   1篇
  1980年   5篇
  1979年   5篇
  1978年   2篇
  1977年   2篇
  1976年   1篇
  1975年   2篇
  1973年   1篇
排序方式: 共有2865条查询结果,搜索用时 15 毫秒
11.
ABSTRACT. The problem of estimating the mean of a multivariate normal distribution when the parameter space allows an orthogonal decomposition is discussed. Risk functions and lower bounds for a class of shrinkage estimators that includes Stein's estimator are derived, and an improvement on Stein's estimator that takes advantage of the orthogonal decomposition is introduced. Uniform asymptotics related to Pinsker's minimax risk is derived and we give conditions for attaining the lower risk bound. Special cases including regression and analysis of variance are discussed.  相似文献   
12.
We propose kernel density estimators based on prebinned data. We use generalized binning schemes based on the quantiles points of a certain auxiliary distribution function. Therein the uniform distribution corresponds to usual binning. The statistical accuracy of the resulting kernel estimators is studied, i.e. we derive mean squared error results for the closeness of these estimators to both the true function and the kernel estimator based on the original data set. Our results show the influence of the choice of the auxiliary density on the binned kernel estimators and they reveal that non-uniform binning can be worthwhile.  相似文献   
13.
This paper characterizes the family of Normal distributions within the class of exponential families of distributions, via the structure of the bias of the maximum likelihood estimator Θ n of the canonical parameter Θ . More specifically, when E θ ( Θ n ) – Θ = (1/ n ) Q ( Θ ) + o (1/ n ), the equality Q ( Θ ) = 0 proves to be a property of the Normal distribution only. The same conclusion is obtained for the one-dimensional case bt assuming that Q ( Θ ) is a polynomial of Θ .  相似文献   
14.
The Bayes estimators of the Gini index, the mean income and the proportion of the population living below a prescribed income level are obtained in this paper on the basis of censored income data from a pareto income distribution. The said estimators are obtained under the assumptions of a two-parameter exponential prior distribution and the usual squared error loss function. This work is also extended to the case when the income data are grouped and the exact incomes for the individuals in the population are not available. The method for the assessment of the hyperparameters is also outlined. Finally, the results are generalized for the doubly truncated gamma prior distribution. Now deceased.  相似文献   
15.
We show the second-order relative accuracy, on bounded sets, of the Studentized bootstrap, exponentially tilted bootstrap and nonparametric likelihood tilted bootstrap, for means and smooth functions of means. We also consider the relative errors for larger deviations. Our method exploits certain connections between Edgeworth and saddlepoint approximations to simplify the computations.  相似文献   
16.
A test is proposed for assessing the lack of fit of heteroscedastic nonlinear regression models that is based on comparison of nonparametric kernel and parametric fits. A data-driven method is proposed for bandwidth selection using the asymptotically optimal bandwidth of the parametric null model which leads to a test that has a limiting normal distribution under the null hypothesis and is consistent against any fixed alternative. The resulting test is applied to the problem of testing the lack of fit of a generalized linear model.  相似文献   
17.
Since Durbin (1954) and Sargan (1958), instrumental variable (IV) method has long been one of the most popular procedures among economists and other social scientists to handle linear models with errors-in-variables. A direct application of this method to nonlinear errors-in-variables models, however, fails to yield consistent estimators.

This article restricts attention to Tobit and Probit models and shows that simple recentering and rescaling of the observed dependent variable may restore consistency of the standard IV estimator if the true dependent variable and the IV's are jointly normally distributed. Although the required condition seems rarely to be satisfied by real data, our Monte Carlo experiment suggests that the proposed estimator may be quite robust to the possible deviation from normality.  相似文献   
18.
Book Reviews     
Books reviewed:
Philip Hans Franses & Dick van Dijk, Non-linear Time Series Models in Empirical Finance
Herbert Spirer, Louise Spirer & A.J. Jaffe, Misused Statistics
Deborah J. Bennett, Randomness
C.E. Linneborg, Data Analysis by Resampling: Concepts and Applications
I. Clark and W.V. Harper, Practical Geostatistics 2000  相似文献   
19.
Consider a standard conjugate family of prior distributions for a vector-parameter indexing an exponential family. Two distinct model parameterizations may well lead to standard conjugate families which are not consistent, i.e. one family cannot be derived from the other by the usual change-of-variable technique. This raises the problem of finding suitable parameterizations that may lead to enriched conjugate families which are more flexible than the traditional ones. The previous remark motivates the definition of a new property for an exponential family, named conditional reducibility. Features of conditionally-reducible natural exponential families are investigated thoroughly. In particular, we relate this new property to the notion of cut, and show that conditionally-reducible families admit a reparameterization in terms of a vector having likelihood-independent components. A general methodology to obtain enriched conjugate distributions for conditionally-reducible families is described in detail, generalizing previous works and more recent contributions in the area. The theory is illustrated with reference to natural exponential families having simple quadratic variance function.  相似文献   
20.
We deal with smoothed estimators for conditional probability functions of discrete-valued time series { Yt } under two different settings. When the conditional distribution of Yt given its lagged values falls in a parametric family and depends on exogenous random variables, a smoothed maximum (partial) likelihood estimator for the unknown parameter is proposed. While there is no prior information on the distribution, various nonparametric estimation methods have been compared and the adjusted Nadaraya–Watson estimator stands out as it shares the advantages of both Nadaraya–Watson and local linear regression estimators. The asymptotic normality of the estimators proposed has been established in the manner of sparse asymptotics, which shows that the smoothed methods proposed outperform their conventional, unsmoothed, parametric counterparts under very mild conditions. Simulation results lend further support to this assertion. Finally, the new method is illustrated via a real data set concerning the relationship between the number of daily hospital admissions and the levels of pollutants in Hong Kong in 1994–1995. An ad hoc model selection procedure based on a local Akaike information criterion is proposed to select the significant pollutant indices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号