首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   413篇
  免费   4篇
管理学   16篇
人口学   3篇
丛书文集   4篇
理论方法论   11篇
综合类   8篇
社会学   15篇
统计学   360篇
  2023年   1篇
  2022年   3篇
  2021年   4篇
  2020年   3篇
  2019年   17篇
  2018年   20篇
  2017年   26篇
  2016年   8篇
  2015年   9篇
  2014年   13篇
  2013年   141篇
  2012年   25篇
  2011年   13篇
  2010年   14篇
  2009年   15篇
  2008年   11篇
  2007年   12篇
  2006年   7篇
  2005年   8篇
  2004年   14篇
  2003年   9篇
  2002年   1篇
  2001年   6篇
  2000年   4篇
  1999年   3篇
  1998年   4篇
  1997年   5篇
  1996年   4篇
  1995年   2篇
  1994年   2篇
  1993年   3篇
  1992年   1篇
  1991年   2篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1978年   1篇
排序方式: 共有417条查询结果,搜索用时 0 毫秒
31.
Summary.  We propose a flexible generalized auto-regressive conditional heteroscedasticity type of model for the prediction of volatility in financial time series. The approach relies on the idea of using multivariate B -splines of lagged observations and volatilities. Estimation of such a B -spline basis expansion is constructed within the likelihood framework for non-Gaussian observations. As the dimension of the B -spline basis is large, i.e. many parameters, we use regularized and sparse model fitting with a boosting algorithm. Our method is computationally attractive and feasible for large dimensions. We demonstrate its strong predictive potential for financial volatility on simulated and real data, and also in comparison with other approaches, and we present some supporting asymptotic arguments.  相似文献   
32.
Conditional variance estimation in heteroscedastic regression models   总被引:1,自引:0,他引:1  
First, we propose a new method for estimating the conditional variance in heteroscedasticity regression models. For heavy tailed innovations, this method is in general more efficient than either of the local linear and local likelihood estimators. Secondly, we apply a variance reduction technique to improve the inference for the conditional variance. The proposed methods are investigated through their asymptotic distributions and numerical performances.  相似文献   
33.
It is often the case that high-dimensional data consist of only a few informative components. Standard statistical modeling and estimation in such a situation is prone to inaccuracies due to overfitting, unless regularization methods are practiced. In the context of classification, we propose a class of regularization methods through shrinkage estimators. The shrinkage is based on variable selection coupled with conditional maximum likelihood. Using Stein's unbiased estimator of the risk, we derive an estimator for the optimal shrinkage method within a certain class. A comparison of the optimal shrinkage methods in a classification context, with the optimal shrinkage method when estimating a mean vector under a squared loss, is given. The latter problem is extensively studied, but it seems that the results of those studies are not completely relevant for classification. We demonstrate and examine our method on simulated data and compare it to feature annealed independence rule and Fisher's rule.  相似文献   
34.
In this article, we develop the theory of k-factor Gegenbauer Autoregressive Moving Average (GARMA) process with infinite variance innovations which is a generalization of the stable seasonal fractional Autoregressive Integrated Moving Average (ARIMA) model introduced by Diongue et al. (2008 Diongue, A.K., Guégan, D. (2008). Estimation of k-Factor GIGARCH Process: A Monte Carlo Study. Communications in Statistics-Simulation and Computation 37:20372049.[Taylor &; Francis Online], [Web of Science ®] [Google Scholar]). Stationarity and invertibility conditions of this new model are derived. Conditional Sum of Squares (CSS) and Markov Chains Monte Carlo (MCMC) Whittle methods are investigated for parameter estimation. Monte Carlo simulations are also used to evaluate the finite sample performance of these estimation techniques. Finally, the usefulness of the model is corroborated with the application to streamflow data for Senegal River at Bakel.  相似文献   
35.
We estimate two well-known risk measures, the value-at-risk (VAR) and the expected shortfall, conditionally to a functional variable (i.e., a random variable valued in some semi(pseudo)-metric space). We use nonparametric kernel estimation for constructing estimators of these quantities, under general dependence conditions. Theoretical properties are stated whereas practical aspects are illustrated on simulated data: nonlinear functional and GARCH(1,1) models. Some ideas on bandwidth selection using bootstrap are introduced. Finally, an empirical example is given through data of the S&P 500 time series.  相似文献   
36.
Many hypothesis tests are univariate tests and cannot cope with multiple hypothesis without an auxiliary procedure as e. g. the Bonferroni-Holm-procedure. At the same time, there is an urgent need for testing multiple hypothesis due to the very simple existing methods as the Bonferroni-correction or the Bonferroni-Holm-procedure, which suffers from a very small local significance level to detect statistical inferences or the drawback that logical and statistical dependencies among the test statistics are not used, whereby its detection is NP-hard. In honour of this occasion, we present a multiple hypothesis test for i.i.d. random variables based on conditional differences in means, which is capable to cope with multiple hypothesis and does not suffer on such drawbacks as the Bonferroni-correction or the Bonferroni-Holm-procedure. Thereby, the computation time can be neglected.  相似文献   
37.
Statistical inference for the diffusion coefficients of multivariate diffusion processes has been well established in recent years; however, it is not the case for the drift coefficients. Furthermore, most existing estimation methods for the drift coefficients are proposed under the assumption that the diffusion matrix is positive definite and time homogeneous. In this article, we put forward two estimation approaches for estimating the drift coefficients of the multivariate diffusion models with the time inhomogeneously positive semidefinite diffusion matrix. They are maximum likelihood estimation methods based on both the martingale representation theorem and conditional characteristic functions and the generalized method of moments based on conditional characteristic functions, respectively. Consistency and asymptotic normality of the generalized method of moments estimation are also proved in this article. Simulation results demonstrate that these methods work well.  相似文献   
38.
Fiducial inference has been gaining presence recently and it is the intention of the present article to look at the notion of fiducial generators; meaning procedures to simulate parameter values that in some sense correspond to simulations from some implicit fiducial distribution. It is well known that when the distribution has group structure, stemming from the natural pivotal associated, a fiducial may be obtained. It is in the non group distributions that there appears to be still room for finding a fiducial distribution. Recently some general procedures have been proposed for dealing with generalized fiducials, but these depend on certain choices for a structural equation or a fiducial equation, as in Hannig (2009 Hannig, J. (2009). On generalized fiducial inference. Stat. Sin. 19:491544.[Web of Science ®] [Google Scholar]) or Taraldsen and Lindqvist (2013 Taraldsen, G., Lindqvist, B.H. (2013). Fiducial theory and optimal inference. Ann. Stat. 41(1):323341.[Crossref], [Web of Science ®] [Google Scholar]), respectively. A brief presentation is made of an earlier approach to fiducial inference for multivariate parameters, as in Brillinger (1962 Brillinger, D.R. (1962). Examples bearing on the definition of fiducial probability with a bibliography. Ann. Math. Stat. 33(4):13491355.[Crossref] [Google Scholar]), and the implied fiducial generator introduced in Engen and Lillegård (1997 Engen, S., Lillegård, M. (1997). Stochastic simulation conditioned on sufficient statistics. Biometrika 84(1):235240.[Crossref], [Web of Science ®] [Google Scholar]), trying to connect them. Three interesting non group distributions are seen; two of them, the truncated exponential and the two-parameter gamma, already reported in literature. A third non group distribution is analyzed; the inverse Gaussian, connecting the fiducial that results following Brillinger (1962 Brillinger, D.R. (1962). Examples bearing on the definition of fiducial probability with a bibliography. Ann. Math. Stat. 33(4):13491355.[Crossref] [Google Scholar]), with a result pertaining confidence limits for the shape parameter in Hsieh (1990 Hsieh, H.K. (1990). Inferences on the coefficient of variation of an inverse-Gaussian distribution. Commun. Stat. - Theory Methods 19(5):15891605.[Taylor &; Francis Online], [Web of Science ®] [Google Scholar]). In the three cases, comparisons are made with the Bayesian posteriors that have been known to be close numerically. Some discussion is made on the issue of singularities of the fiducial density and its connection with densities that do not integrate to unity. As to the case of discrete observables, some comments are made for the Bernoulli distribution, only.  相似文献   
39.
Rubin (1976 Rubin, D.B. (1976). Inference and missing data. Biometrika 63(3):581592.[Crossref], [Web of Science ®] [Google Scholar]) derived general conditions under which inferences that ignore missing data are valid. These conditions are sufficient but not generally necessary, and therefore may be relaxed in some special cases. We consider here the case of frequentist estimation of a conditional cdf subject to missing outcomes. We partition a set of data into outcome, conditioning, and latent variables, all of which potentially affect the probability of a missing response. We describe sufficient conditions under which a complete-case estimate of the conditional cdf of the outcome given the conditioning variable is unbiased. We use simulations on a renal transplant data set (Dienemann et al.) to illustrate the implications of these results.  相似文献   
40.
分支蚁群动态扰动算法求解TSP问题   总被引:1,自引:0,他引:1  
蚁群优化算法是一种求解组合优化难题的强启发式算法,它利用正反馈和并行计算原理,具备很强的搜索能力。近年来,蚁群优化算法广泛应用于TSP问题的研究。本文提出分支蚁群动态扰动(DPBAC)算法,该算法主要从5个方面对基本蚁群算法做出改进:引入分支策略选取出发城市;改进状态转移规则;引入变异策略改进蚂蚁路径;改进信息素更新规则;引入条件动态扰动策略。实验表明,该算法可以有效改善基本蚁群算法搜索时间较长、容易陷入局部极小等缺点。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号