全文获取类型
收费全文 | 61篇 |
免费 | 0篇 |
专业分类
管理学 | 22篇 |
人口学 | 4篇 |
丛书文集 | 1篇 |
理论方法论 | 1篇 |
综合类 | 16篇 |
社会学 | 13篇 |
统计学 | 4篇 |
出版年
2022年 | 2篇 |
2021年 | 1篇 |
2020年 | 4篇 |
2017年 | 3篇 |
2016年 | 1篇 |
2015年 | 2篇 |
2014年 | 3篇 |
2013年 | 15篇 |
2012年 | 5篇 |
2011年 | 6篇 |
2010年 | 2篇 |
2009年 | 1篇 |
2008年 | 2篇 |
2007年 | 1篇 |
2006年 | 1篇 |
2005年 | 1篇 |
2003年 | 1篇 |
2002年 | 1篇 |
1999年 | 2篇 |
1997年 | 1篇 |
1996年 | 2篇 |
1994年 | 1篇 |
1989年 | 2篇 |
1988年 | 1篇 |
排序方式: 共有61条查询结果,搜索用时 15 毫秒
61.
《随机性模型》2013,29(2-3):695-724
Abstract We consider two variants of a two-station tandem network with blocking. In both variants the first server ceases to work when the queue length at the second station hits a ‘blocking threshold.’ In addition, in variant 2 the first server decreases its service rate when the second queue exceeds a ‘slow-down threshold, ’ which is smaller than the blocking level. In both variants the arrival process is Poisson and the service times at both stations are exponentially distributed. Note, however, that in case of slow-downs, server 1 works at a high rate, a slow rate, or not at all, depending on whether the second queue is below or above the slow-down threshold or at the blocking threshold, respectively. For variant 1, i.e., only blocking, we concentrate on the geometric decay rate of the number of jobs in the first buffer and prove that for increasing blocking thresholds the sequence of decay rates decreases monotonically and at least geometrically fast to max{ρ1, ρ2}, where ρ i is the load at server i. The methods used in the proof also allow us to clarify the asymptotic queue length distribution at the second station. Then we generalize the analysis to variant 2, i.e., slow-down and blocking, and establish analogous results. 相似文献