排序方式: 共有235条查询结果,搜索用时 15 毫秒
231.
金融资产收益率分布具有\"尖峰\"、\"肥尾\"、\"有偏\"、\"非对称\"等典型事实,传统的正态分布、t分布、SKST分布无法完全描述这些特征,影响了以收益率分布设定为基础之一的参数法VaR模型度量的效果。近年来,理论界提出了AEPD、AST、ALD等分布来改善对金融资产收益率分布的描述。本文以沪深300指数为例,比较和分析了这些分布对金融资产收益率典型事实特征的描述及其在VaR度量效果上的差异。研究表明并非捕捉金融资产收益率分布典型事实越多的模型测度风险的效果越好:AEPD、 AST、ALD分布能较好地描述金融资产收益率的典型特征,但是在风险度量效果上却只能证明AEPD、AST分布绝对优于正态分布,而与SKST分布相比无明显差异; ALD分布在度量空头VaR时效果甚至比正态分布更差,但在计算低分位水平下的多头VaR值时却明显优于其他分布。 相似文献
232.
网络模型已经成为研究银行系统性风险的重要方法。然而现有研究忽视了银行系统性风险的小概率特点,同时也缺少度量银行系统性风险的统一标准。为此,本文提出了基于网络模型的银行系统性风险度量方法:银行系统性风险VaR和银行系统性风险ES。首先,本文采用蒙特卡洛模拟方法,模拟银行外部冲击造成银行间网络损失的大样本。在银行间网络损失大样本中,估计银行系统性风险VaR和银行系统性风险ES。这两个测度能够捕捉到银行间网络损失的尾部特征,解决了对比随机冲击结果无法反映银行系统性风险的问题。其次,在模拟实验中,本文利用真实银行间网络结构参数,对模拟的三种银行间网络进行校准,保证了研究结论真实性和可靠性。最后,在模拟实验中发现:(1)外部冲击会引发违约传染的连锁反应,并导致银行间网络损失分布从近似正态分布转变成尖峰厚尾分布,最后变成双峰分布。(2)网络集中度越高发生违约传染连锁反应的概率越小,但是传染的破坏力会更大。(3)银行间网络的潜在传染作用会极大的放大银行系统的风险,而且违约传染效应是呈指数增长的。 相似文献
233.
234.
针对金融资产回报时间序列的尖峰厚尾性和波动集聚性,提出了基于AR(1)-GARCH(1,1)模型与幂律型分布相结合计算VaR的方法。用GARCH模型对时间序列建模刻画波动集聚性,用基于幂律型分布的扩展形式拟合GARCH模型的残差分布尾部,刻画回报时间序列的厚尾特征,二者结合更好地描述回报时序的动态波动现象。对上证综指进行实证分析,结果表明本文提出的方法比基于正态分布的GARCH模型和静态幂律尾法更精确。 相似文献
235.
基于VaR 的最优资产组合选择策略 总被引:6,自引:0,他引:6
基于VaR( Value- at- Risk) 的方法, 对Markowitz 资产组合选择策略作了进一步的研究, 给出了一种选择最优资产组合的新策略, 该策略可以使所选择组合的收益率与风险相匹配, 在一定的置信水平下保证收益率最大而风险最小, 并刻画了投资者对风险的喜好倾向。 相似文献