首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   368篇
  免费   5篇
管理学   48篇
民族学   8篇
人才学   1篇
人口学   12篇
丛书文集   18篇
理论方法论   10篇
综合类   36篇
社会学   45篇
统计学   195篇
  2024年   1篇
  2023年   1篇
  2022年   4篇
  2021年   7篇
  2020年   9篇
  2019年   11篇
  2018年   20篇
  2017年   24篇
  2016年   11篇
  2015年   15篇
  2014年   15篇
  2013年   80篇
  2012年   25篇
  2011年   19篇
  2010年   12篇
  2009年   17篇
  2008年   23篇
  2007年   13篇
  2006年   10篇
  2005年   9篇
  2004年   9篇
  2003年   7篇
  2002年   2篇
  2001年   5篇
  2000年   4篇
  1999年   3篇
  1998年   4篇
  1997年   2篇
  1996年   3篇
  1995年   1篇
  1993年   1篇
  1989年   1篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
排序方式: 共有373条查询结果,搜索用时 15 毫秒
371.
Summary.  The aim of the paper is to present methodology for the classification of potential psychotropic drugs on the basis of their activity. We first sketch the background of this class of drugs and then zoom in on so-called pharmacoelectroencephalogram studies. These data pose some statistical challenges. For classification purposes, we propose a flexible hierarchical discriminant analysis tool, allowing us to take the specific nature of the drug class into account, as well as the features of the mixed models, in combination with fractional polynomials, fitted to the electroencephalogram data. The method is evaluated against the background of existing methods. The method's performance is studied by using a comprehensive analysis of a large electroencephalogram data set.  相似文献   
372.
Many problems in the environmental and biological sciences involve the analysis of large quantities of data. Further, the data in these problems are often subject to various types of structure and, in particular, spatial dependence. Traditional model fitting often fails due to the size of the datasets since it is difficult to not only specify but also to compute with the full covariance matrix describing the spatial dependence. We propose a very general type of mixed model that has a random spatial component. Recognizing that spatial covariance matrices often exhibit a large number of zero or near-zero entries, covariance tapering is used to force near-zero entries to zero. Then, taking advantage of the sparse nature of such tapered covariance matrices, backfitting is used to estimate the fixed and random model parameters. The novelty of the paper is the combination of the two techniques, tapering and backfitting, to model and analyze spatial datasets several orders of magnitude larger than those datasets typically analyzed with conventional approaches. Results will be demonstrated with two datasets. The first consists of regional climate model output that is based on an experiment with two regional and two driver models arranged in a two-by-two layout. The second is microarray data used to build a profile of differentially expressed genes relating to cerebral vascular malformations, an important cause of hemorrhagic stroke and seizures.  相似文献   
373.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号