首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3018篇
  免费   58篇
  国内免费   34篇
管理学   317篇
民族学   14篇
人口学   52篇
丛书文集   187篇
理论方法论   69篇
综合类   1026篇
社会学   139篇
统计学   1306篇
  2024年   15篇
  2023年   25篇
  2022年   38篇
  2021年   44篇
  2020年   65篇
  2019年   100篇
  2018年   115篇
  2017年   119篇
  2016年   108篇
  2015年   91篇
  2014年   135篇
  2013年   478篇
  2012年   292篇
  2011年   170篇
  2010年   148篇
  2009年   122篇
  2008年   128篇
  2007年   153篇
  2006年   124篇
  2005年   103篇
  2004年   103篇
  2003年   101篇
  2002年   76篇
  2001年   57篇
  2000年   50篇
  1999年   30篇
  1998年   24篇
  1997年   24篇
  1996年   8篇
  1995年   7篇
  1994年   9篇
  1993年   6篇
  1992年   13篇
  1991年   6篇
  1990年   4篇
  1989年   6篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   3篇
  1983年   1篇
  1982年   2篇
  1977年   1篇
排序方式: 共有3110条查询结果,搜索用时 0 毫秒
151.
A test statistic proposed by Li (1999) for testing the adequacy of heteroscedastic nonlinear regression models using nonparametric kernel smoothers is applied to testing for linearity in generalized linear models. Simulation results for models with centered gamma and inverse Gaussian errors are presented to illustrate the performance of the resulting test compared with log-likelihood ratio tests for specific parametric alternatives. The test is applied to a data set of coronary heart disease status (Hosmer and Lemeshow, (1990).  相似文献   
152.
In Wu and Zen (1999), a linear model selection procedure based on M-estimation is proposed, which includes many classical model selection criteria as its special cases, and it is shown that the selection procedure is strongly consistent for a variety of penalty functions. In this paper, we will investigate its small sample performances for some choices of fixed penalty functions. It can be seen that the performance varies with the choice of the penalty. Hence, a randomized penalty based on observed data is proposed, which preserves the consistency property and provides improved performance over a fixed choice of penalty functions.  相似文献   
153.
Autoregressive model is a popular method for analysing the time dependent data, where selection of order parameter is imperative. Two commonly used selection criteria are the Akaike information criterion (AIC) and the Bayesian information criterion (BIC), which are known to suffer the potential problems regarding overfit and underfit, respectively. To our knowledge, there does not exist a criterion in the literature that can satisfactorily perform under various situations. Therefore, in this paper, we focus on forecasting the future values of an observed time series and propose an adaptive idea to combine the advantages of AIC and BIC but to mitigate their weaknesses based on the concept of generalized degrees of freedom. Instead of applying a fixed criterion to select the order parameter, we propose an approximately unbiased estimator of mean squared prediction errors based on a data perturbation technique for fairly comparing between AIC and BIC. Then use the selected criterion to determine the final order parameter. Some numerical experiments are performed to show the superiority of the proposed method and a real data set of the retail price index of China from 1952 to 2008 is also applied for illustration.  相似文献   
154.
In this paper, we investigate the selecting performances of a bootstrapped version of the Akaike information criterion for nonlinear self-exciting threshold autoregressive-type data generating processes. Empirical results will be obtained via Monte Carlo simulations. The quality of our method is assessed by comparison with its non-bootstrap counterpart and through a novel procedure based on artificial neural networks.  相似文献   
155.
Demonstrated equivalence between a categorical regression model based on case‐control data and an I‐sample semiparametric selection bias model leads to a new goodness‐of‐fit test. The proposed test statistic is an extension of an existing Kolmogorov–Smirnov‐type statistic and is the weighted average of the absolute differences between two estimated distribution functions in each response category. The paper establishes an optimal property for the maximum semiparametric likelihood estimator of the parameters in the I‐sample semiparametric selection bias model. It also presents a bootstrap procedure, some simulation results and an analysis of two real datasets.  相似文献   
156.
Transductive methods are useful in prediction problems when the training dataset is composed of a large number of unlabeled observations and a smaller number of labeled observations. In this paper, we propose an approach for developing transductive prediction procedures that are able to take advantage of the sparsity in the high dimensional linear regression. More precisely, we define transductive versions of the LASSO (Tibshirani, 1996) and the Dantzig Selector (Candès and Tao, 2007). These procedures combine labeled and unlabeled observations of the training dataset to produce a prediction for the unlabeled observations. We propose an experimental study of the transductive estimators that shows that they improve the LASSO and Dantzig Selector in many situations, and particularly in high dimensional problems when the predictors are correlated. We then provide non-asymptotic theoretical guarantees for these estimation methods. Interestingly, our theoretical results show that the Transductive LASSO and Dantzig Selector satisfy sparsity inequalities under weaker assumptions than those required for the “original” LASSO.  相似文献   
157.
Abstract. We consider the problem of testing parametric assumptions in an inverse regression model with a convolution‐type operator. An L 2 ‐type goodness‐of‐fit test is proposed which compares the distance between a parametric and a non‐parametric estimate of the regression function. Asymptotic normality of the corresponding test statistic is shown under the null hypothesis and under a general non‐parametric alternative with different rates of convergence in both cases. The feasibility of the proposed test is demonstrated by means of a small simulation study. In particular, the power of the test against certain types of alternative is investigated. Finally, an empirical example is provided, in which the proposed methods are applied to the determination of the shape of the luminosity profile of the elliptical galaxy NGC 5017.  相似文献   
158.
i , i = 1, 2, ..., k be k independent exponential populations with different unknown location parameters θ i , i = 1, 2, ..., k and common known scale parameter σ. Let Y i denote the smallest observation based on a random sample of size n from the i-th population. Suppose a subset of the given k population is selected using the subset selection procedure according to which the population π i is selected iff Y i Y (1)d, where Y (1) is the largest of the Y i 's and d is some suitable constant. The estimation of the location parameters associated with the selected populations is considered for the squared error loss. It is observed that the natural estimator dominates the unbiased estimator. It is also shown that the natural estimator itself is inadmissible and a class of improved estimators that dominate the natural estimator is obtained. The improved estimators are consistent and their risks are shown to be O(kn −2). As a special case, we obtain the coresponding results for the estimation of θ(1), the parameter associated with Y (1). Received: January 6, 1998; revised version: July 11, 2000  相似文献   
159.
Summary. When a number of distinct models contend for use in prediction, the choice of a single model can offer rather unstable predictions. In regression, stochastic search variable selection with Bayesian model averaging offers a cure for this robustness issue but at the expense of requiring very many predictors. Here we look at Bayes model averaging incorporating variable selection for prediction. This offers similar mean-square errors of prediction but with a vastly reduced predictor space. This can greatly aid the interpretation of the model. It also reduces the cost if measured variables have costs. The development here uses decision theory in the context of the multivariate general linear model. In passing, this reduced predictor space Bayes model averaging is contrasted with single-model approximations. A fast algorithm for updating regressions in the Markov chain Monte Carlo searches for posterior inference is developed, allowing many more variables than observations to be contemplated. We discuss the merits of absolute rather than proportionate shrinkage in regression, especially when there are more variables than observations. The methodology is illustrated on a set of spectroscopic data used for measuring the amounts of different sugars in an aqueous solution.  相似文献   
160.
Summary. The paper presents a general strategy for selecting the bandwidth of nonparametric regression estimators and specializes it to local linear regression smoothers. The procedure requires the sample to be divided into a training sample and a testing sample. Using the training sample we first compute a family of regression smoothers indexed by their bandwidths. Next we select the bandwidth by minimizing the empirical quadratic prediction error on the testing sample. The resulting bandwidth satisfies a finite sample oracle inequality which holds for all bounded regression functions. This permits asymptotically optimal estimation for nearly any regression function. The practical performance of the method is illustrated by a simulation study which shows good finite sample behaviour of our method compared with other bandwidth selection procedures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号