首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1344篇
  免费   51篇
  国内免费   13篇
管理学   107篇
民族学   3篇
人口学   8篇
丛书文集   76篇
理论方法论   40篇
综合类   647篇
社会学   22篇
统计学   505篇
  2024年   1篇
  2023年   11篇
  2022年   12篇
  2021年   6篇
  2020年   19篇
  2019年   39篇
  2018年   39篇
  2017年   59篇
  2016年   42篇
  2015年   63篇
  2014年   93篇
  2013年   204篇
  2012年   135篇
  2011年   102篇
  2010年   101篇
  2009年   72篇
  2008年   66篇
  2007年   70篇
  2006年   72篇
  2005年   43篇
  2004年   34篇
  2003年   21篇
  2002年   20篇
  2001年   18篇
  2000年   14篇
  1999年   11篇
  1998年   8篇
  1997年   7篇
  1996年   2篇
  1995年   3篇
  1994年   1篇
  1993年   2篇
  1992年   5篇
  1990年   3篇
  1989年   2篇
  1988年   2篇
  1987年   3篇
  1986年   2篇
  1984年   1篇
排序方式: 共有1408条查询结果,搜索用时 0 毫秒
21.
Hollander (1970) proposed a conditionally distribution-free test of bivariate symmetry based on the empirical distribution function. In this paper Hollander’s test statistic is examined In greater detail: in particular; its conditional asymptotic distribution is derived under the null hypothesis as well as under a sequence of local alternatives. Percentage points of the asymptotic distribution are presented; a power comparison between Hollander’s statistic and the likelihood ratio criterion in testing a variant of the sphericity hypothesis in multivariate analysis is made.  相似文献   
22.
Bayesian and empirical Bayesian decision rules are exhibited for the interval estimation of the parameter 0 of a Uniform (0,θ) distribution. The estimate ?,δ>resulting in the interval [?,?+δ]suffers loss given by L(?,δ>,θ)=1-[?≦e≦?+δ]+c1((?-θ)2+(?+δ?θ)2))+c2δ. The solution is presented for prior distributions G which have bounded support, no point masses,∫θ?mdG(θ)<∞ and for some integer m. An example is presented involving a particular parametric form for G and rates of risk convergence in the empirical Bayes problem for this example are calculated.  相似文献   
23.
Asymptotic distributions of regression-type estimators for the parameters of stable distributions am obtained. The asymptotic normalized standard deviations of the estimators are computed for various values of the parameters and various choices of the number of points used in getting the regression estimates.  相似文献   
24.
I illustrate likelihood methods for estimating the consequences of shrinkage along any ridge path as well as methods for picking a two-hyperparameter path of optimal curvature and the optimal point on that path. In addition to my published "classical" methods, I also illustrate both the empirical Bayes and the random coefficient maximum likelihood approaches. Traces of risks for known parameters and losses for simulated responses are followed by traces of estimates that can reveal the same general information.  相似文献   
25.
The estimation of the parameters of two or more geometric distribuionsis considered by usinq an empirical Bayesian approach. Robbins (1983) gave empirical Bayes estimates if the number of distributions N is large, buthere we consider the cascwhore N is small. The parameters of the prior distribution areest imated by looking at maximum like lihood and momentest imation methods.  相似文献   
26.
The relative 'performances of improved ridge estimators and an empirical Bayes estimator are studied by means of Monte Carlo simulations. The empirical Bayes method is seen to perform consistently better in terms of smaller MSE and more accurate empirical coverage than any of the estimators considered here. A bootstrap method is proposed to obtain more reliable estimates of the MSE of ridge esimators. Some theorems on the bootstrap for the ridge estimators are also given and they are used to provide an analytical understanding of the proposed bootstrap procedure. Empirical coverages of the ridge estimators based on the proposed procedure are generally closer to the nominal coverage when compared to their earlier counterparts. In general, except for a few cases, these coverages are still less accurate than the empirical coverages of the empirical Bayes estimator.  相似文献   
27.
In some observational studies, we have random censoring model. However, the data available may be partially observable censored data consisting of the observed failure times and only those nonfailure times which are subject to follow-up. Suzuki (1985) discussed the problem of nonparametric estimation of the survival function from such partially observable censored data. In this article, we derive a nonparametric Bayes estimator of the survival function for such data of failures and follow-ups under a Dirichlet process prior and squared error loss. The limiting properties such as the mean square consistency, weak convergence and strong consistency of the Bayes estimator are studied. Finally, the procedures developed are illustrated by means of an example.  相似文献   
28.
Simultaneous estimation of parameters with p (≥ 2) components, where each component has a generalized life distribution, is considered under a sum of squared error loss function. Improved estimators are obtained which dominate the maximum likelihood and the niinimum mean square estimators. Robustness of the improved estimators is shown even when the component distributions are dependent. The result is extended to the estimation of the system reliability when the components are connected in series. Several numerical studies are performed to demonstrate the risk improvement and the Pitman closeness of the new estimators.  相似文献   
29.
The asymptotic distribution of the sup-norm of the heavily weighted empirical process is established in the multidimensional case. This theorem extends in particular the famous result in Jaeschke (1975, 1979) to higher dimensions. There is a striking difference between the behaviour for higher dimensions and that for dimension one, especially the limiting distribution is now a simple transformation of a standard exponential random variable.  相似文献   
30.
This article addresses the problem of testing the null hypothesis H0 that a random sample of size n is from a distribution with the completely specified continuous cumulative distribution function Fn(x). Kolmogorov-type tests for H0 are based on the statistics C+ n = Sup[Fn(x)?F0(x)] and C? n=Sup[F0(x)?Fn(x)], where Fn(x) is an empirical distribution function. Let F(x) be the true cumulative distribution function, and consider the ordered alternative H1: F(x)≥F0(x) for all x and with strict inequality for some x. Although it is natural to reject H0 and accept H1 if C + n is large, this article shows that a test that is superior in some ways rejects F0 and accepts H1 if Cmdash n is small. Properties of the two tests are compared based on theoretical results and simulated results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号