全文获取类型
收费全文 | 3441篇 |
免费 | 83篇 |
国内免费 | 55篇 |
专业分类
管理学 | 210篇 |
民族学 | 22篇 |
人口学 | 13篇 |
丛书文集 | 356篇 |
理论方法论 | 173篇 |
综合类 | 1899篇 |
社会学 | 123篇 |
统计学 | 783篇 |
出版年
2024年 | 5篇 |
2023年 | 22篇 |
2022年 | 34篇 |
2021年 | 34篇 |
2020年 | 56篇 |
2019年 | 53篇 |
2018年 | 76篇 |
2017年 | 120篇 |
2016年 | 76篇 |
2015年 | 91篇 |
2014年 | 175篇 |
2013年 | 483篇 |
2012年 | 224篇 |
2011年 | 198篇 |
2010年 | 168篇 |
2009年 | 172篇 |
2008年 | 159篇 |
2007年 | 199篇 |
2006年 | 213篇 |
2005年 | 201篇 |
2004年 | 170篇 |
2003年 | 153篇 |
2002年 | 123篇 |
2001年 | 123篇 |
2000年 | 87篇 |
1999年 | 38篇 |
1998年 | 16篇 |
1997年 | 16篇 |
1996年 | 21篇 |
1995年 | 8篇 |
1994年 | 7篇 |
1993年 | 14篇 |
1992年 | 9篇 |
1991年 | 3篇 |
1990年 | 6篇 |
1989年 | 4篇 |
1988年 | 2篇 |
1987年 | 2篇 |
1986年 | 1篇 |
1985年 | 2篇 |
1984年 | 1篇 |
1983年 | 4篇 |
1982年 | 5篇 |
1980年 | 1篇 |
1978年 | 2篇 |
1976年 | 1篇 |
1975年 | 1篇 |
排序方式: 共有3579条查询结果,搜索用时 15 毫秒
41.
In this article, we present a compressive sensing based framework for generalized linear model regression that employs a two-component noise model and convex optimization techniques to simultaneously detect outliers and determine optimally sparse representations of noisy data from arbitrary sets of basis functions. We then extend our model to include model order reduction capabilities that can uncover inherent sparsity in regression coefficients and achieve simple, superior fits. Second, we use the mixed ?2/?1 norm to develop another model that can efficiently uncover block-sparsity in regression coefficients. By performing model order reduction over all independent variables and basis functions, our algorithms successfully deemphasize the effect of independent variables that become uncorrelated with dependent variables. This desirable property has various applications in real-time anomaly detection, such as faulty sensor detection and sensor jamming in wireless sensor networks. After developing our framework and inheriting a stable recovery theorem from compressive sensing theory, we present two simulation studies on sparse or block-sparse problems that demonstrate the superior performance of our algorithms with respect to (1) classic outlier-invariant regression techniques like least absolute value and iteratively reweighted least-squares and (2) classic sparse-regularized regression techniques like LASSO. 相似文献
42.
Francesco Porro 《统计学通讯:理论与方法》2013,42(18):3967-3977
The aim of this article is to establish an ordering related to the inequality for the recently introduced Zenga distribution. In addition to the well-known order based on the Lorenz curve, the order based on I(p) curve is considered. Since the Zenga distribution seems to be suitable to model wealth, financial, actuarial, and, especially, income distributions, these findings are fundamental in the understanding of how parameter values are related to inequality. This investigation shows that for the Zenga distribution, two of the three parameters are inequality indicators. 相似文献
43.
44.
45.
The problem of making statistical inference about θ =P(X > Y) has been under great investigation in the literature using simple random sampling (SRS) data. This problem arises naturally in the area of reliability for a system with strength X and stress Y. In this study, we will consider making statistical inference about θ using ranked set sampling (RSS) data. Several estimators are proposed to estimate θ using RSS. The properties of these estimators are investigated and compared with known estimators based on simple random sample (SRS) data. The proposed estimators based on RSS dominate those based on SRS. A motivated example using real data set is given to illustrate the computation of the newly suggested estimators. 相似文献
46.
James T. McClave 《统计学通讯:理论与方法》2013,42(3):259-276
The max X2 technique for estimating rhe order of autoregressive processes (McClave (1976)) is extended to moving average models. The autöregressive-moving average duality is exploited by using the inverse autocorrelation function and the subset autoregression algorithm. The technique is demonstrated via simulations, and is applied to Box and Jenkins (1970) Series A. 相似文献
47.
J. John Petkau 《统计学通讯:理论与方法》2013,42(15):1523-1534
For a hypothesis testing problem involving the location and scale parameters of an exponential distribution, Perng (1977) proposed a test procedure based on the first r out of n observed failure times. In this paper the likelihood ratio test is determined, critical values are provided and the asymptotic null distribution is determined. An alternate test based on an F statistic is also proposed and the critical regions and power functions of the procedures are compared. 相似文献
48.
This paper deals with the probability density functions of quotient of order statistics. We use the Mellin transform technique, to find the distribution of the quotient Z= X/Xwhere X.,X(i < j) are the ith and jth order statistics from the Pareto, Power and Weibull distributions 相似文献
49.
V.E. Kane 《统计学通讯:理论与方法》2013,42(17):1935-1957
A class of goodness-of-fit estimators is found to provide a useful alternative in certain situations to the standard maximum likelihood method which has some undesirable estimation characteristics for estimation from the three-parameter lognormal distribution. The class of goodness-of-fit tests considered include the Shapiro-Wilk and Filliben tests which reduce to a weighted linear combination of the order statistics that can be maximized in estimation problems. The weighted order statistic estimators are compared to the standard procedures in Monte Carlo simulations. Robustness of the procedures are examined and example data sets analyzed. 相似文献
50.
Let X 1, X 2,…, X n be independent exponential random variables with X i having failure rate λ i for i = 1,…, n. Denote by D i:n = X i:n ? X i?1:n the ith spacing of the order statistics X 1:n ≤ X 2:n ≤ ··· ≤ X n:n , i = 1,…, n, where X 0:n ≡ 0. It is shown that if λ n+1 ≤ [≥] λ k for k = 1,…, n then D n:n ≤ lr D n+1:n+1 and D 1:n ≤ lr D 2:n+1 [D 2:n+1 ≤ lr D 2:n ], and that if λ i + λ j ≥ λ k for all distinct i,j, and k then D n?1:n ≤ lr D n:n and D n:n+1 ≤ lr D n:n , where ≤ lr denotes the likelihood ratio order. We also prove that D 1:n ≤ lr D 2:n for n ≥ 2 and D 2:3 ≤ lr D 3:3 for all λ i 's. 相似文献