首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1165篇
  免费   32篇
  国内免费   11篇
管理学   46篇
民族学   6篇
人口学   7篇
丛书文集   73篇
理论方法论   28篇
综合类   687篇
社会学   43篇
统计学   318篇
  2024年   10篇
  2023年   18篇
  2022年   6篇
  2021年   14篇
  2020年   21篇
  2019年   30篇
  2018年   28篇
  2017年   29篇
  2016年   40篇
  2015年   38篇
  2014年   73篇
  2013年   113篇
  2012年   93篇
  2011年   85篇
  2010年   63篇
  2009年   68篇
  2008年   72篇
  2007年   75篇
  2006年   64篇
  2005年   52篇
  2004年   52篇
  2003年   42篇
  2002年   23篇
  2001年   20篇
  2000年   16篇
  1999年   12篇
  1998年   5篇
  1997年   9篇
  1996年   8篇
  1995年   5篇
  1994年   5篇
  1993年   3篇
  1992年   5篇
  1991年   2篇
  1988年   3篇
  1987年   1篇
  1986年   2篇
  1983年   1篇
  1982年   1篇
  1979年   1篇
排序方式: 共有1208条查询结果,搜索用时 15 毫秒
101.
采用不等式估值方法 ,对含时滞的偏泛函微分方程解的稳定性进行了讨论 ,获得了零解渐近稳定的简洁判据  相似文献   
102.
103.
Abstract.  Functional magnetic resonance imaging (fMRI) is a technique for studying the active human brain. During the fMRI experiment, a sequence of MR images is obtained, where the brain is represented as a set of voxels. The data obtained are a realization of a complex spatio-temporal process with many sources of variation, both biological and technical. We present a spatio-temporal point process model approach for fMRI data where the temporal and spatial activation are modelled simultaneously. It is possible to analyse other characteristics of the data than just the locations of active brain regions, such as the interaction between the active regions. We discuss both classical statistical inference and Bayesian inference in the model. We analyse simulated data without repeated stimuli both for location of the activated regions and for interactions between the activated regions. An example of analysis of fMRI data, using this approach, is presented.  相似文献   
104.
We derive a non-parametric test for testing the presence of V(Xii) in the non-parametric first-order autoregressive model Xi+1=T(Xi)+V(Xii)+U(Xii+1, where the function T(x) is assumed known. The test is constructed as a functional of a basic process for which we establish a weak invariance principle, under the null hypothesis and under stationarity and mixing assumptions. Bounds for the local and non-local powers are provided under a condition which ensures that the power tends to one as the sample size tends to infinity.The testing procedure can be applied, e.g. to bilinear models, ARCH models, EXPAR models and to some other uncommon models. Our results confirm the robustness of the test constructed in Ngatchou Wandji (1995) and in Diebolt & Ngatchou Wandji (1995).  相似文献   
105.
The hierarchically orthogonal functional decomposition of any measurable function η of a random vector X=(X1,?…?, Xp) consists in decomposing η(X) into a sum of increasing dimension functions depending only on a subvector of X. Even when X1,?…?, Xp are assumed to be dependent, this decomposition is unique if the components are hierarchically orthogonal. That is, two of the components are orthogonal whenever all the variables involved in one of the summands are a subset of the variables involved in the other. Setting Y=η(X), this decomposition leads to the definition of generalized sensitivity indices able to quantify the uncertainty of Y due to each dependent input in X [Chastaing G, Gamboa F, Prieur C. Generalized Hoeffding–Sobol decomposition for dependent variables – application to sensitivity analysis. Electron J Statist. 2012;6:2420–2448]. In this paper, a numerical method is developed to identify the component functions of the decomposition using the hierarchical orthogonality property. Furthermore, the asymptotic properties of the components estimation is studied, as well as the numerical estimation of the generalized sensitivity indices of a toy model. Lastly, the method is applied to a model arising from a real-world problem.  相似文献   
106.
G. Aneiros  F. Ferraty  P. Vieu 《Statistics》2015,49(6):1322-1347
The problem of variable selection is considered in high-dimensional partial linear regression under some model allowing for possibly functional variable. The procedure studied is that of nonconcave-penalized least squares. It is shown the existence of a √n/sn-consistent estimator for the vector of pn linear parameters in the model, even when pn tends to ∞ as the sample size n increases (sn denotes the number of influential variables). An oracle property is also obtained for the variable selection method, and the nonparametric rate of convergence is stated for the estimator of the nonlinear functional component of the model. Finally, a simulation study illustrates the finite sample size performance of our procedure.  相似文献   
107.
E. Brunel  A. Roche 《Statistics》2015,49(6):1298-1321
Our aim is to estimate the unknown slope function in the functional linear model when the response Y is real and the random function X is a second-order stationary and periodic process. We obtain our estimator by minimizing a standard (and very simple) mean-square contrast on linear finite dimensional spaces spanned by trigonometric bases. Our approach provides a penalization procedure which allows to automatically select the adequate dimension, in a non-asymptotic point of view. In fact, we can show that our penalized estimator reaches the optimal (minimax) rate of convergence in the sense of the prediction error. We complete the theoretical results by a simulation study and a real example that illustrates how the procedure works in practice.  相似文献   
108.
Regression methods for common data types such as measured, count and categorical variables are well understood but increasingly statisticians need ways to model relationships between variable types such as shapes, curves, trees, correlation matrices and images that do not fit into the standard framework. Data types that lie in metric spaces but not in vector spaces are difficult to use within the usual regression setting, either as the response and/or a predictor. We represent the information in these variables using distance matrices which requires only the specification of a distance function. A low-dimensional representation of such distance matrices can be obtained using methods such as multidimensional scaling. Once these variables have been represented as scores, an internal model linking the predictors and the responses can be developed using standard methods. We call scoring as the transformation from a new observation to a score, whereas backscoring is a method to represent a score as an observation in the data space. Both methods are essential for prediction and explanation. We illustrate the methodology for shape data, unregistered curve data and correlation matrices using motion capture data from an experiment to study the motion of children with cleft lip.  相似文献   
109.
《随机性模型》2013,29(4):493-512
Abstract

We introduce max-multiscaling distributions as solutions to a functional equation which, in a natural way, extends the one fulfilled by max-semistable distributions. We establish that strictly max-multiscaling distributions are products of at most two max-semistable distributions. Next, we show how to obtain these solutions as limit laws of normalized maximum of suitable independent sequences of random variables when sample size has geometric growth.  相似文献   
110.
A strategy using spline function interpolation is developed f o r estimating capital utilisation rates . Cobb-Douglas, CES and translog functional forms are used in estimation. Tests for functional forms are conducted leading t o t h e s e l e c t i o n of the Cobb-Douglas form. Quarterly series of estimated utilisation rates and excess capacity measures are presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号