首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9327篇
  免费   231篇
  国内免费   114篇
管理学   868篇
劳动科学   2篇
民族学   52篇
人才学   2篇
人口学   254篇
丛书文集   606篇
理论方法论   271篇
综合类   5500篇
社会学   373篇
统计学   1744篇
  2024年   10篇
  2023年   54篇
  2022年   75篇
  2021年   101篇
  2020年   167篇
  2019年   166篇
  2018年   204篇
  2017年   297篇
  2016年   213篇
  2015年   238篇
  2014年   421篇
  2013年   1024篇
  2012年   562篇
  2011年   553篇
  2010年   448篇
  2009年   467篇
  2008年   530篇
  2007年   595篇
  2006年   587篇
  2005年   589篇
  2004年   469篇
  2003年   457篇
  2002年   351篇
  2001年   294篇
  2000年   198篇
  1999年   121篇
  1998年   76篇
  1997年   67篇
  1996年   58篇
  1995年   64篇
  1994年   40篇
  1993年   32篇
  1992年   35篇
  1991年   29篇
  1990年   20篇
  1989年   20篇
  1988年   12篇
  1987年   8篇
  1986年   5篇
  1985年   3篇
  1984年   4篇
  1983年   1篇
  1982年   5篇
  1979年   2篇
排序方式: 共有9672条查询结果,搜索用时 15 毫秒
71.
72.
A new control scheme is proposed by borrowing the idea of the Benjamini–Hochberg procedure for controlling the false discovery rate in multiple testing. It is shown theoretically that the proposed 2-span control scheme outperforms the Shewhart X-bar chart in terms of the average run length under any size of mean shifts. Some simulations are carried out to demonstrate that the proposed scheme having various span sizes always outperforms the X-bar chart in terms of the average run lengths.  相似文献   
73.
This article presents a synthetic control chart for detection of shifts in the process median. The synthetic chart is a combination of sign chart and conforming run-length chart. The performance evaluation of the proposed chart indicates that the synthetic chart has a higher power of detecting shifts in process median than the Shewhart charts based on sign statistic as well as the classical Shewhart X-bar chart for various symmetric distributions. The improvement is significant for shifts of moderate to large shifts in the median. The robustness studies of the proposed synthetic control chart against outliers indicate that the proposed synthetic control chart is robust against contamination by outliers.  相似文献   
74.
In this article, we introduce a new distribution-free Shewhart-type control chart that takes into account the location of a single order statistic of the test sample (such as the median) as well as the number of observations in that test sample that lie between the control limits. Exact formulae for the alarm rate, the run length distribution, and the average run length (ARL) are all derived. A key advantage of the chart is that, due to its nonparametric nature, the false alarm rate and in-control run length distribution are the same for all continuous process distributions, and so will be naturally robust. Tables are provided for the implementation of the chart for some typical ARL values and false alarm rates. The empirical study carried out reveals that the new chart is preferable from a robustness point of view in comparison to a classical Shewhart-type chart and also the nonparametric chart of Chakraborti et al. (2004 Chakraborti , S. , van der Laan , P. , van de Wiel , M. A. ( 2004 ). A class of distribution-free control charts . J. Roy. Statist. Soc. Ser. C-Appl. Statist. 53 ( 3 ): 443462 .[Web of Science ®] [Google Scholar]).  相似文献   
75.
In this paper, we propose new estimation techniques in connection with the system of S-distributions. Besides “exact” maximum likelihood (ML), we propose simulated ML and a characteristic function-based procedure. The “exact” and simulated likelihoods can be used to provide numerical, MCMC-based Bayesian inferences.  相似文献   
76.
In this article, we study the reliability properties of systems under bivariate log-logistic model which comes out from a particular stress-strength analysis. For this model, we obtain basic reliability characteristics of series and parallel systems and investigate their properties. We also derive distribution and moments of cold standby system under the abovementioned exchangeable model.  相似文献   
77.
78.
In this article, another version of the generalized exponential geometric distribution different to that of Silva et al. (2010 Silva , R. B. , Barreto-Souza , W. , Cordeiro , G. M. ( 2010 ). A new distribution with decreasing, increasing and upside-down bathtub failure rate. Computat. Statist. Data Anal. 54: 935–944 . [Google Scholar]) is proposed. This new three-parameter lifetime distribution with decreasing, increasing, and bathtub failure rate function is created by compounding the generalized exponential distribution of Gupta and Kundu (1999 Gupta , R. D. , Kundu , D. ( 1999 ). Generalized exponential distributions . Austral. NZ J. Statist. 41 ( 2 ): 173188 .[Crossref], [Web of Science ®] [Google Scholar]) with a geometric distribution. Some basic distributional properties, moment-generating function, rth moment, and Rényi entropy of the new distribution are studied. The model parameters are estimated by the maximum likelihood method and the asymptotic distribution of estimators is discussed. Finally, an application of the new distribution is illustrated using the two real data sets.  相似文献   
79.
This article characterizes uniform convergence rate for general classes of wavelet expansions of stationary Gaussian random processes. The convergence in probability is considered.  相似文献   
80.
Consider the multiple hypotheses testing problem controlling the generalized familywise error rate k-FWER, the probability of at least k false rejections. We propose a plug-in procedure based on the estimation of the number of true null hypotheses. Under the independence assumption of the p-values corresponding to the true null hypotheses, we first introduce the least favorable configuration (LFC) of k-FWER for Bonferroni-type plug-in procedure, then we construct a plug-in k-FWER-controlled procedure based on LFC. For dependent p-values, we establish the asymptotic k-FWER control under some mild conditions. Simulation studies suggest great improvement over generalized Bonferroni test and generalized Holm test.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号