ABSTRACTWe describe two recently proposed machine learning approaches for discovering emerging trends in fatal accidental drug overdoses. The Gaussian Process Subset Scan (Herlands, McFowland, Wilson, & Neill, 2017Neill, D. B. (2017). Multidimensional tensor scan for drug overdose surveillance. Journal of Public Health Informatics, 9(1), e20. doi:10.5210/ojphi.v9i1.7598[Crossref], [Google Scholar]) enables early detection of emerging patterns in spatio-temporal data, accounting for both the complex, correlated nature of the data and the fact that detecting subtle patterns requires integration of information across multiple spatial areas and multiple time steps. We apply this approach to 17 years of county-aggregated data for monthly opioid overdose deaths in the New York City metropolitan area, showing clear advantages in the utility of discovered patterns as compared to typical anomaly detection approaches. To detect and characterize emerging overdose patterns that differentially affect a subpopulation of the data, including geographic, demographic, and behavioral patterns (e.g., which combinations of drugs are involved), we apply the Multidimensional Tensor Scan (Neill, 2017Neill, D. B. (2017). Multidimensional tensor scan for drug overdose surveillance. Journal of Public Health Informatics, 9(1), e20. doi:10.5210/ojphi.v9i1.7598[Crossref], [Google Scholar]) to 8 years of case-level overdose data from Allegheny County, Pennsylvania. We discover previously unidentified overdose patterns which reveal unusual demographic clusters, show impacts of drug legislation, and demonstrate potential for early detection and targeted intervention. These approaches to early detection of overdose patterns can inform prevention and response efforts, as well as understanding the effects of policy changes. 相似文献
Multi-criteria inventory classification groups inventory items into classes, each of which is managed by a specific re-order policy according to its priority. However, the tasks of inventory classification and control are not carried out jointly if the classification criteria and the classification approach are not robustly established from an inventory-cost perspective. Exhaustive simulations at the single item level of the inventory system would directly solve this issue by searching for the best re-order policy per item, thus achieving the subsequent optimal classification without resorting to any multi-criteria classification method. However, this would be very time-consuming in real settings, where a large number of items need to be managed simultaneously.
In this article, a reduction in simulation effort is achieved by extracting from the population of items a sample on which to perform an exhaustive search of best re-order policies per item; the lowest cost classification of in-sample items is, therefore, achieved. Then, in line with the increasing need for ICT tools in the production management of Industry 4.0 systems, supervised classifiers from the machine learning research field (i.e. support vector machines with a Gaussian kernel and deep neural networks) are trained on these in-sample items to learn to classify the out-of-sample items solely based on the values they show on the features (i.e. classification criteria). The inventory system adopted here is suitable for intermittent demands, but it may also suit non-intermittent demands, thus providing great flexibility. The experimental analysis of two large datasets showed an excellent accuracy, which suggests that machine learning classifiers could be implemented in advanced inventory classification systems. 相似文献
This article focuses on conceptual and methodological developments allowing the integration of physical and social dynamics leading to model forecasts of circumstance‐specific human losses during a flash flood. To reach this objective, a random forest classifier is applied to assess the likelihood of fatality occurrence for a given circumstance as a function of representative indicators. Here, vehicle‐related circumstance is chosen as the literature indicates that most fatalities from flash flooding fall in this category. A database of flash flood events, with and without human losses from 2001 to 2011 in the United States, is supplemented with other variables describing the storm event, the spatial distribution of the sensitive characteristics of the exposed population, and built environment at the county level. The catastrophic flash floods of May 2015 in the states of Texas and Oklahoma are used as a case study to map the dynamics of the estimated probabilistic human risk on a daily scale. The results indicate the importance of time‐ and space‐dependent human vulnerability and risk assessment for short‐fuse flood events. The need for more systematic human impact data collection is also highlighted to advance impact‐based predictive models for flash flood casualties using machine‐learning approaches in the future. 相似文献