首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7354篇
  免费   146篇
  国内免费   58篇
管理学   92篇
民族学   30篇
人才学   3篇
人口学   28篇
丛书文集   648篇
理论方法论   56篇
综合类   5142篇
社会学   60篇
统计学   1499篇
  2024年   6篇
  2023年   20篇
  2022年   32篇
  2021年   31篇
  2020年   66篇
  2019年   92篇
  2018年   111篇
  2017年   159篇
  2016年   110篇
  2015年   169篇
  2014年   444篇
  2013年   837篇
  2012年   576篇
  2011年   586篇
  2010年   504篇
  2009年   442篇
  2008年   466篇
  2007年   543篇
  2006年   465篇
  2005年   396篇
  2004年   346篇
  2003年   338篇
  2002年   264篇
  2001年   198篇
  2000年   120篇
  1999年   44篇
  1998年   26篇
  1997年   35篇
  1996年   33篇
  1995年   19篇
  1994年   9篇
  1993年   17篇
  1992年   9篇
  1991年   8篇
  1990年   5篇
  1989年   6篇
  1988年   7篇
  1987年   1篇
  1986年   2篇
  1985年   3篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   3篇
  1979年   3篇
  1978年   2篇
排序方式: 共有7558条查询结果,搜索用时 15 毫秒
91.
Consider the linear regression model Y = Xθ+ ε where Y denotes a vector of n observations on the dependent variable, X is a known matrix, θ is a vector of parameters to be estimated and e is a random vector of uncorrelated errors. If X'X is nearly singular, that is if the smallest characteristic root of X'X s small then a small perurbation in the elements of X, such as due to measurement errors, induces considerable variation in the least squares estimate of θ. In this paper we examine for the asymptotic case when n is large the effect of perturbation with regard to the bias and mean squared error of the estimate.  相似文献   
92.
We obtain first order asymptotic expansions for the distribution of the excess of a standard normal random walk over a curved boundary and the error probabilities of some repeated significance tests. The key step in the analysis is an asymptotic expansion for the conditional probability that the random walk has not crossed the boundary before the N step, given that it is near the boundary after the nth step.  相似文献   
93.
Given a life testing experiment consisting of n items, n-1 of which have the expected life λ while one could have an expected life λ/α with 0 < α < 1 the problem is. to find a mean square error (MSE) minimizing estimation function. The standard estimators for the homogeneous case (α = 1) overestimate the expected life and their MSE tend to infinity when a tends to 0.

Looking at the estimation problem as an insurance (see Anscombe (1960)) two different “testimators” are compared with respect to their MSE, Numerical results show that an estimation function based on the “Epstein-statistic” x(n)/[xbar] is the best one.  相似文献   
94.
95.
Two nonparametric estimators o f the survival distributionare discussed. The estimators were proposed by Kaplan and Meier (1958) and Breslow (1972) and are applicable when dealing with censored data. It is known that they are asymptotically unbiased and uniformly strongly consistent, and when properly normalized that they converge weakly to the same Gaussian process. In this paper, the properties of the estimators are carefully inspected in small or moderate samples. The Breslow estimator, a shrinkage version of the Kaplan-Meier, nearly always has the smaller mean square error (MSE) whenever the truesurvival probabilityis at least 0.20, but has considerably larger MSE than the Kaplan-Meier estimator when the survivalprobability is near zero.  相似文献   
96.
Consider a skewed population. Suppose an intelligent guess could be made about an interval that contains the population mean. There may exist biased estimators with smaller mean squared error than the arithmetic mean within such an interval. This article indicates when it is advisable to shrink the arithmetic mean towards a guessed interval using root estimators. The goal is to obtain an estimator that is better near the average of natural origins. An estimator proposed. This estimator contains the Thompson (1968 Thompson , J. R. ( 1968 ). Accuracy borrowing in the estimation of the mean by shrinkage towards an interval . J. Amer. Statist. Assoc. 63 : 953963 . [CSA] [CROSSREF] [Taylor & Francis Online], [Web of Science ®] [Google Scholar]) ordinary shrinkage estimator, the Jenkins et al. (1973 Jenkins , O. C. , Ringer , L. J. , Hartley , H. O. ( 1973 ). Root estimators . J Amer. Statist. Assoc. 68 : 414419 . [CSA] [CROSSREF] [Taylor & Francis Online], [Web of Science ®] [Google Scholar]) square-root estimator, and the arithmetic sample mean as special cases. The bias and the mean squared error of the proposed more general estimator is compared with the three special cases. Shrinkage coefficients that yield minimum mean squared error estimators are obtained. The proposed estimator is considerably more efficient than the three special cases. This remains true for highly skewed populations. The merits of the proposed shrinkage square-root estimator are supported by the results of numerical and simulation studies.  相似文献   
97.
This article addresses the problem of estimating the population variance using auxiliary information in the presence of measurement errors. When the measurement error variance associated with study variable is known, a class of estimators of the population variance using auxiliary information has been proposed. We obtain the bias and mean squared errors of the suggested class of estimators upto the terms of order n ?1, and also optimum estimators in asymptotic sense of the class with approximate mean squared error formula.  相似文献   
98.
A smoothing parameter inversely proportional to the square root of the true density is known to produce kernel estimates of the density having faster bias rate of convergence. We show that in the case of kernel-based nonparametric hazard rate estimation, a smoothing parameter inversely proportional to the square root of the true hazard rate leads to a mean square error rate of order n ?8/9, an improvement over the standard second order kernel. An adaptive version of such a procedure is considered and analyzed.  相似文献   
99.
A distribution function is estimated by a kernel method with

a poinrwise mean squared error criterion at a point x. Relation- ships between the mean squared error, the point x, the sample size and the required kernel smoothing parazeter are investigated for several distributions treated by Azzaiini (1981). In particular it is noted that at a centre of symmetry or near a mode of the distribution the kernei method breaks down. Point- wise estimation of a distribution function is motivated as a more useful technique than a reference range for preliminary medical diagnosis.  相似文献   
100.
A multinomial classification rule is proposed based on a prior-valued smoothing for the state probabilities. Asymptotically, the proposed rule has an error rate that converges uniformly and strongly to that of the Bayes rule. For a fixed sample size the prior-valued smoothing is effective in obtaining reason¬able classifications to the situations such as missing data. Empirically, the proposed rule is compared favorably with other commonly used multinomial classification rules via Monte Carlo sampling experiments  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号