Here we consider a multinomial probit regression model where the number of variables substantially exceeds the sample size and only a subset of the available variables is associated with the response. Thus selecting a small number of relevant variables for classification has received a great deal of attention. Generally when the number of variables is substantial, sparsity-enforcing priors for the regression coefficients are called for on grounds of predictive generalization and computational ease. In this paper, we propose a sparse Bayesian variable selection method in multinomial probit regression model for multi-class classification. The performance of our proposed method is demonstrated with one simulated data and three well-known gene expression profiling data: breast cancer data, leukemia data, and small round blue-cell tumors. The results show that compared with other methods, our method is able to select the relevant variables and can obtain competitive classification accuracy with a small subset of relevant genes. 相似文献
ABC inventory classifications are widely used in practice, with demand value and demand volume as the most common ranking criteria. The standard approach in ABC applications is to set the same service level for all stock keeping units (SKUs) in a class. In this paper, we show (for three large real life datasets) that the application of both demand value and demand volume as ABC ranking criteria, with fixed service levels per class, leads to solutions that are far from cost optimal. An alternative criterion proposed by Zhang et al. performs much better, but is still considerably outperformed by a new criterion proposed in this paper. The new criterion is also more general in that it can take criticality of SKUs into account. Managerial insights are obtained into what class should have the highest/lowest service level, a topic that has been disputed in the literature. 相似文献
Multi-criteria inventory classification groups inventory items into classes, each of which is managed by a specific re-order policy according to its priority. However, the tasks of inventory classification and control are not carried out jointly if the classification criteria and the classification approach are not robustly established from an inventory-cost perspective. Exhaustive simulations at the single item level of the inventory system would directly solve this issue by searching for the best re-order policy per item, thus achieving the subsequent optimal classification without resorting to any multi-criteria classification method. However, this would be very time-consuming in real settings, where a large number of items need to be managed simultaneously.
In this article, a reduction in simulation effort is achieved by extracting from the population of items a sample on which to perform an exhaustive search of best re-order policies per item; the lowest cost classification of in-sample items is, therefore, achieved. Then, in line with the increasing need for ICT tools in the production management of Industry 4.0 systems, supervised classifiers from the machine learning research field (i.e. support vector machines with a Gaussian kernel and deep neural networks) are trained on these in-sample items to learn to classify the out-of-sample items solely based on the values they show on the features (i.e. classification criteria). The inventory system adopted here is suitable for intermittent demands, but it may also suit non-intermittent demands, thus providing great flexibility. The experimental analysis of two large datasets showed an excellent accuracy, which suggests that machine learning classifiers could be implemented in advanced inventory classification systems. 相似文献
Biclustering consists in simultaneous partitioning of the set of samples and the set of their attributes (features) into subsets (classes). Samples and features classified together are supposed to have a high relevance to each other which can be observed by intensity of their expressions. We define the notion of consistency for biclustering using interrelation between centroids of sample and feature classes. We prove that consistent biclustering implies separability of the classes by convex cones. While previous works on biclustering concentrated on unsupervised learning and did not consider employing a training set, whose classification is given, we propose a model for supervised biclustering, whose consistency is achieved by feature selection. The developed model involves solution of a fractional 0–1 programming problem. Preliminary computational results on microarray data mining problems are reported.This research work was partially supported by NSF, NIH and AirForce grants. 相似文献
A predictor is asked to rank eventualities according to their plausibility, based on past cases. We assume that she can form a ranking given any memory that consists of finitely many past cases. Mild consistency requirements on these rankings imply that they have a numerical representation via a matrix assigning numbers to eventuality–case pairs, as follows. Given a memory, each eventuality is ranked according to the sum of the numbers in its row, over cases in memory. The number attached to an eventuality–case pair can be interpreted as the degree of support that the past case lends to the plausibility of the eventuality. Special instances of this result may be viewed as axiomatizing kernel methods for estimation of densities and for classification problems. Interpreting the same result for rankings of theories or hypotheses, rather than of specific eventualities, it is shown that one may ascribe to the predictor subjective conditional probabilities of cases given theories, such that her rankings of theories agree with rankings by the likelihood functions. 相似文献