首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10846篇
  免费   277篇
  国内免费   158篇
管理学   621篇
劳动科学   1篇
民族学   71篇
人才学   1篇
人口学   30篇
丛书文集   1406篇
理论方法论   405篇
综合类   8095篇
社会学   138篇
统计学   513篇
  2024年   13篇
  2023年   71篇
  2022年   98篇
  2021年   114篇
  2020年   139篇
  2019年   146篇
  2018年   120篇
  2017年   145篇
  2016年   210篇
  2015年   240篇
  2014年   603篇
  2013年   511篇
  2012年   705篇
  2011年   759篇
  2010年   661篇
  2009年   662篇
  2008年   721篇
  2007年   895篇
  2006年   836篇
  2005年   743篇
  2004年   671篇
  2003年   655篇
  2002年   580篇
  2001年   431篇
  2000年   229篇
  1999年   78篇
  1998年   47篇
  1997年   34篇
  1996年   39篇
  1995年   29篇
  1994年   40篇
  1993年   12篇
  1992年   7篇
  1991年   8篇
  1990年   7篇
  1989年   7篇
  1988年   4篇
  1987年   3篇
  1986年   2篇
  1985年   3篇
  1981年   1篇
  1979年   1篇
  1976年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
Estimators are obtained tor quantiles of survival distributions. This is accomplished by approximating Lritr distribution of the transtorrneri data, where the transformation used is that of Box and Cox (1964). The normal approximation as in Box and Cox and, in addition, the extreme value approximation are considered. More generally, to use the methods given, the approximating distribution must come from a location-scale family. For some commonly used survival random variables T the performance of the above approximations are evaluated in terms of the ratio of the true quantiles of T to the estimated one, in the long run. This performance is also evaluated for lower quantiles using simulated lognormai, Weibull and gamma data. Several examples are given to illustrate the methodology herein, including one with actual data.  相似文献   
32.
In this paper, we consider the problem of estimating the location and scale parameters of an extreme value distribution based on multiply Type-II censored samples. We first describe the best linear unbiased estimators and the maximum likelihood estimators of these parameters. After observing that the best linear unbiased estimators need the construction of some tables for its coefficients and that the maximum likelihood estimators do not exist in an explicit algebraic form and hence need to be found by numerical methods, we develop approximate maximum likelihood estimators by appropriately approximating the likelihood equations. In addition to being simple explicit estimators, these estimators turn out to be nearly as efficient as the best linear unbiased estimators and the maximum likelihood estimators. Next, we derive the asymptotic variances and covariance of these estimators in terms of the first two single moments and the product moments of order statistics from the standard extreme value distribution. Finally, we present an example in order to illustrate all the methods of estimation of parameters discussed in this paper.  相似文献   
33.
Homoscedastic and heteroscedastic Gaussian mixtures differ in the constraints placed on the covariance matrices of the mixture components. A new mixture, called herein a strophoscedastic mixture, is defined by a new constraint, This constraint requires the matrices to be identical under orthogonal trans¬formations, where different transformations are allowed for different matrices. It is shown that the M-step of the EM method for estimating the parameters of strophoscedastic mixtures from sample data is explicitly solvable using singular value decompositions. Consequently, the EM-based maximum likelihood estimation algorithm is as easily implemented for strophoscedastic mixtures as it is for homoscedastic and heteroscedastic mixtures. An example of a “noisy” Archimedian spiral is presented.  相似文献   
34.
ABSTRACT

A quantile autoregresive model is a useful extension of classical autoregresive models as it can capture the influences of conditioning variables on the location, scale, and shape of the response distribution. However, at the extreme tails, standard quantile autoregression estimator is often unstable due to data sparsity. In this article, assuming quantile autoregresive models, we develop a new estimator for extreme conditional quantiles of time series data based on extreme value theory. We build the connection between the second-order conditions for the autoregression coefficients and for the conditional quantile functions, and establish the asymptotic properties of the proposed estimator. The finite sample performance of the proposed method is illustrated through a simulation study and the analysis of U.S. retail gasoline price.  相似文献   
35.
36.
In the present paper, a semiparametric maximum-likelihood-type test statistic is proposed and proved to have the same limit null distribution as the classical parametric likelihood one. Under some mild conditions, the limiting law of the proposed test statistic, suitably normalized and centralized, is shown to be double exponential, under the null hypothesis of no change in the parameter of copula models. We also discuss the Gaussian-type approximations for the semiparametric likelihood ratio. The asymptotic distribution of the proposed statistic under specified alternatives is shown to be normal, and an approximation to the power function is given. Simulation results are provided to illustrate the finite sample performance of the proposed statistical tests based on the double exponential and Gaussian-type approximations.  相似文献   
37.
The authors consider the correlation between two arbitrary functions of the data and a parameter when the parameter is regarded as a random variable with given prior distribution. They show how to compute such a correlation and use closed form expressions to assess the dependence between parameters and various classical or robust estimators thereof, as well as between p‐values and posterior probabilities of the null hypothesis in the one‐sided testing problem. Other applications involve the Dirichlet process and stationary Gaussian processes. Using this approach, the authors also derive a general nonparametric upper bound on Bayes risks.  相似文献   
38.
The author describes a method for improving standard “exact” confidence intervals in discrete distributions with respect to size while retaining correct level. The binomial, negative binomial, hypergeometric, and Poisson distributions are considered explicitly. Contrary to other existing methods, the author's solution possesses a natural nesting condition: if α < α', the 1 ‐ α' confidence interval is included in the 1 ‐ α interval. Nonparametric confidence intervals for a quantile are also considered.  相似文献   
39.
Studying the right tail of a distribution, one can classify the distributions into three classes based on the extreme value index γγ. The class γ>0γ>0 corresponds to Pareto-type or heavy tailed distributions, while γ<0γ<0 indicates that the underlying distribution has a finite endpoint. The Weibull-type distributions form an important subgroup within the Gumbel class with γ=0γ=0. The tail behaviour can then be specified using the Weibull tail index. Classical estimators of this index show severe bias. In this paper we present a new estimation approach based on the mean excess function, which exhibits improved bias and mean squared error. The asserted properties are supported by simulation experiments and asymptotic results. Illustrations with real life data sets are provided.  相似文献   
40.
We consider in this paper the regularization by projection of a linear inverse problem Y=Af+εξY=Af+εξ where ξξ denotes a Gaussian white noise, A   a compact operator and ε>0ε>0 a noise level. Compared to the standard unbiased risk estimation (URE) method, the risk hull minimization (RHM) procedure presents a very interesting numerical behavior. However, the regularization in the singular value decomposition setting requires the knowledge of the eigenvalues of AA. Here, we deal with noisy eigenvalues: only observations on this sequence are available. We study the efficiency of the RHM method in this situation. More generally, we shed light on some properties usually related to the regularization with a noisy operator.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号