首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   442篇
  免费   18篇
  国内免费   11篇
管理学   346篇
民族学   1篇
人口学   2篇
丛书文集   1篇
理论方法论   2篇
综合类   93篇
社会学   12篇
统计学   14篇
  2024年   2篇
  2023年   1篇
  2022年   7篇
  2021年   3篇
  2020年   7篇
  2019年   9篇
  2018年   12篇
  2017年   22篇
  2016年   35篇
  2015年   35篇
  2014年   31篇
  2013年   66篇
  2012年   25篇
  2011年   20篇
  2010年   21篇
  2009年   27篇
  2008年   25篇
  2007年   34篇
  2006年   26篇
  2005年   15篇
  2004年   17篇
  2003年   12篇
  2002年   6篇
  2001年   4篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
排序方式: 共有471条查询结果,搜索用时 15 毫秒
101.
We consider a multi‐stage inventory system with stochastic demand and processing capacity constraints at each stage, for both finite‐horizon and infinite‐horizon, discounted‐cost settings. For a class of such systems characterized by having the smallest capacity at the most downstream stage and system utilization above a certain threshold, we identify the structure of the optimal policy, which represents a novel variation of the order‐up‐to policy. We find the explicit functional form of the optimal order‐up‐to levels, and show that they depend (only) on upstream echelon inventories. We establish that, above the threshold utilization, this optimal policy achieves the decomposition of the multidimensional objective cost function for the system into a sum of single‐dimensional convex functions. This decomposition eliminates the curse of dimensionality and allows us to numerically solve the problem. We provide a fast algorithm to determine a (tight) upper bound on this threshold utilization for capacity‐constrained inventory problems with an arbitrary number of stages. We make use of this algorithm to quantify upper bounds on the threshold utilization for three‐, four‐, and five‐stage capacitated systems over a range of model parameters, and discuss insights that emerge.  相似文献   
102.
张李浩  刘斌 《中国管理科学》2018,26(10):132-139
本文以两条竞争供应链(每条供应链均包含一个制造商和一个零售商)为研究对象,基于其是否投资无线射频识别(Radio Frequency Identification,RFID)技术,分别构建了两条供应链均不投资RFID(N情景)、供应链1投资RFID(S1情景),供应链2投资RFID(S2情景),及两条供应链均投资RFID(T情景)的收益模型,求解出相应的最优解并探讨供应链投资RFID的均衡策略。研究发现:相较于N情景,单条供应链投资RFID技术对其竞争供应链成员收益产生"负外部性"。当RFID成本较低时,供应链的均衡策略为T情景;当RFID成本较高时,错放率较低的供应链不采用RFID技术,其竞争供应链将采用RFID技术以提高自身的竞争力。  相似文献   
103.
消费者的策略性行为使零售商的生鲜农产品的定价和库存决策面临更大挑战。本文基于报童模型,综合考虑消费者的策略性行为,对生鲜农产品价值下降进行离散化处理。刻画策略性消费者的决策行为,构建零售商的单阶段和两阶段定价及库存决策模型,分析了产品价值剩余率对消费者行为、零售商最优定价、最优库存水平以及零售商利润的影响机理。研究发现,在单阶段模型中零售商最优价格和最优库存水平均随产品价值剩余率的递增而递增;而在两阶段模型中,第二阶段最优价格随价值剩余率的变化趋势可能存在阈值。  相似文献   
104.
We consider a continuous review inventory system where delivery lead times can be managed by expediting in‐transit orders shipped from the supplier. First, we propose an ordering/expediting policy and derive expressions for evaluating the operating characteristics of such systems. Second, using extensive numerical experiments, we quantify the benefits of such an expediting policy. Third, we investigate a number of managerial issues. Specifically, we analyze the impact of the number of expediting hubs and their locations along the shipment network on the performance of such systems and offer insights into the design of the shipment network. We show (i) a single expediting hub that is optimally located in a shipment network can capture the majority of cost savings achieved by a multi‐hub system, especially when expediting cost is not low or demand variability is not high; (ii) when expediting time is proportional to the time to destination, for small‐enough or large‐enough demand variations, a single expediting hub located in the middle of the shipment network can capture the majority of cost savings of an optimally located hub; and (iii) in general, hubs close to the retailer significantly drive down costs, whereas hubs close to the supplier may not offer much cost savings.  相似文献   
105.
In this study, we consider the integrated inventory replenishment and transportation operations in a supply chain where the orders placed by the downstream retailer are dispatched by the upstream warehouse via an in‐house fleet of limited size. We first consider the single‐item single‐echelon case where the retailer operates with a quantity based replenishment policy, (r,Q), and the warehouse is an ample supplier. We model the transportation operations as a queueing system and derive the operating characteristics of the system in exact terms. We extend this basic model to a two‐echelon supply chain where the warehouse employs a base‐stock policy. The departure process of the warehouse is characterized in distribution, which is then approximated by an Erlang arrival process by matching the first two moments for the analysis of the transportation queueing system. The operating characteristics and the expected cost rate are derived. An extension of this system to multiple retailers is also discussed. Numerical results are presented to illustrate the performance and the sensitivity of the models and the value of coordinating inventory and transportation operations.  相似文献   
106.
It is common for a firm to make use of multiple suppliers of different delivery lead times, reliabilities, and costs. In this study, we are concerned with the joint pricing and inventory control problem for such a firm that has a quick‐response supplier and a regular supplier that both suffer random disruptions, and faces price‐sensitive random demands. We aim at characterizing the optimal ordering and pricing policies in each period over a planning horizon, and analyzing the impacts of supply source diversification. We show that, when both suppliers are unreliable, the optimal inventory policy in each period is a reorder point policy and the optimal price is decreasing in the starting inventory level in that period. In addition, we show that having supply source diversification or higher supplier reliability increases the firm's optimal profit and lowers the optimal selling price. We also demonstrate that, with the selling price as a decision, a supplier may receive even more orders from the firm after an additional supplier is introduced. For the special case where the quick‐response supplier is perfectly reliable, we further show that the optimal inventory policy is of a base‐stock type and the optimal pricing policy is a list‐price policy with markdowns.  相似文献   
107.
考虑产品变质的VMI混合补货发货策略及优化仿真   总被引:1,自引:0,他引:1  
本文研究了“产品可变质”情况下的VMI库存补货与装运调度问题,并建立了Poisson需求过程下的VMI混合补货发货模型,根据此模型通过简单的规划求解即可得到使长期平均成本最小的最佳混合策略组合。由于模型推演过程中涉及到对补货周期内期望发货次数的近似估计,因而模型解是拟最优的。算例和模型仿真显示,模型结果与仿真结果十分相近,从而模型有效性得以确认。  相似文献   
108.
Information delays exist when the most recent inventory information available to the Inventory Manager (IM) is dated. In other words, the IM observes only the inventory level that belongs to an earlier period. Such situations are not uncommon, and they arise when it takes a while to process the demand data and pass the results to the IM. We introduce dynamic information delays as a Markov process into the standard multiperiod stochastic inventory problem with backorders. We develop the concept of a reference inventory position. We show that this position along with the magnitude of the latest observed delay and the age of this observation are sufficient statistics for finding the optimal order quantities. Furthermore, we establish that the optimal ordering policy is of state‐dependent base‐stock type with respect to the reference inventory position (or state‐dependent (s, S) type if there is a fixed ordering cost). The optimal base stock and (s, S) levels depend on the magnitude of the latest observed delay and the age of this observation. Finally, we study the sensitivity of the optimal base stock and the optimal cost with respect to the sufficient statistics.  相似文献   
109.
基于CPFR的多产品分销系统库存优化模型   总被引:2,自引:0,他引:2  
本文中的分销系统由生产多种产品的多个制造商,一个地区分销中心DC,多个零售商所组成,系统采用基于CPFR来确定订货临界点,并且在假设DC和零售商都实行连续性盘点的(R,Q)库存控制策略,提前期为随机变量,零售商需求为泊松分布的前提下,以整个分销系统的库存成本最小化为目标函数,以DC和零售商的多产品服务水平为约束条件,通过确定最佳订货批量,建立了此多产品分销系统的库存优化模型,从而达到有效控制库存的目的.  相似文献   
110.
定期信用支付条件下的多阶段货价变动型存贮问题   总被引:8,自引:0,他引:8  
本文研究了定期信用支付条件下的多阶段货价变动型存贮问题,得到了最优订购策略并设计了算法以说明模型的使用。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号