首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
统计学   2篇
  2012年   1篇
  1999年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
Contamination of a sampled distribution, for example by a heavy-tailed distribution, can degrade the performance of a statistical estimator. We suggest a general approach to alleviating this problem, using a version of the weighted bootstrap. The idea is to 'tilt' away from the contaminated distribution by a given (but arbitrary) amount, in a direction that minimizes a measure of the new distribution's dispersion. This theoretical proposal has a simple empirical version, which results in each data value being assigned a weight according to an assessment of its influence on dispersion. Importantly, distance can be measured directly in terms of the likely level of contamination, without reference to an empirical measure of scale. This makes the procedure particularly attractive for use in multivariate problems. It has several forms, depending on the definitions taken for dispersion and for distance between distributions. Examples of dispersion measures include variance and generalizations based on high order moments. Practicable measures of the distance between distributions may be based on power divergence, which includes Hellinger and Kullback–Leibler distances. The resulting location estimator has a smooth, redescending influence curve and appears to avoid computational difficulties that are typically associated with redescending estimators. Its breakdown point can be located at any desired value ε∈ (0, ½) simply by 'trimming' to a known distance (depending only on ε and the choice of distance measure) from the empirical distribution. The estimator has an affine equivariant multivariate form. Further, the general method is applicable to a range of statistical problems, including regression.  相似文献   
2.
We consider optimal testing procedures for specific models of early and instantaneous failures in reliability studies. These models are typically used to accommodate lifetime data that have a higher concentration of failures near time zero. We show that it is possible to derive uniformly most powerful tests, for testing the mixing parameter in the instantaneous failure model, for general lifetime distributions. A novel procedure to test for early failures, which uses an invariance property of the maximum likelihood estimate of the nuisance parameter, is also presented.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号