首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4317篇
  免费   86篇
  国内免费   18篇
管理学   227篇
民族学   8篇
人口学   55篇
丛书文集   48篇
理论方法论   33篇
综合类   552篇
社会学   63篇
统计学   3435篇
  2024年   10篇
  2023年   25篇
  2022年   46篇
  2021年   57篇
  2020年   70篇
  2019年   152篇
  2018年   205篇
  2017年   298篇
  2016年   169篇
  2015年   131篇
  2014年   172篇
  2013年   1142篇
  2012年   342篇
  2011年   145篇
  2010年   139篇
  2009年   149篇
  2008年   160篇
  2007年   113篇
  2006年   92篇
  2005年   110篇
  2004年   96篇
  2003年   71篇
  2002年   66篇
  2001年   56篇
  2000年   64篇
  1999年   52篇
  1998年   60篇
  1997年   40篇
  1996年   17篇
  1995年   27篇
  1994年   19篇
  1993年   20篇
  1992年   21篇
  1991年   9篇
  1990年   11篇
  1989年   7篇
  1988年   8篇
  1987年   5篇
  1986年   2篇
  1985年   7篇
  1984年   6篇
  1983年   9篇
  1982年   4篇
  1981年   4篇
  1980年   5篇
  1979年   1篇
  1978年   1篇
  1977年   5篇
  1975年   1篇
排序方式: 共有4421条查询结果,搜索用时 25 毫秒
121.
This paper presents an approach to cross-validated window width choice which greatly reduces computation time, which can be used regardless of the nature of the kernel function, and which avoids the use of the Fast Fourier Transform. This approach is developed for window width selection in the context of kernel estimation of an unknown conditional mean.  相似文献   
122.
We propose several diagnostic methods for checking the adequacy of marginal regression models for analyzing correlated binary data. We use a parametric marginal model based on latent variables and derive the projection (hat) matrix, Cook's distance, various residuals and Mahalanobis distance between the observed binary responses and the estimated probabilities for a cluster. Emphasized are several graphical methods including the simulated Q-Q plot, the half-normal probability plot with a simulated envelope, and the partial residual plot. The methods are illustrated with a real life example.  相似文献   
123.
In many applications, decisions are made on the basis of function of parameters g(θ). When the value of g(theta;) is calculated using estimated values for te parameters, its is important to have a measure of the uncertainty associated with that value of g(theta;). Likelihood ratio approaches to finding likelihood intervals for functions of parameters have been shown to be more reliable, in terms of coverage probability, than the linearization approach. Two approaches to the generalization of the profiling algorithm have been proposed in the literature to enable construction of likelihood intervals for a function of parameters (Chen and Jennrich, 1996; Bates and Watts, 1988). In this paper we show the equivalence of these two methods. We also provide and analysis of cases in which neither profiling algorithm is appropriate. For one of these cases an alternate approach is suggested Whereas generalized profiling is based on maximizing the likelihood function given a constraint on the value of g(θ), the alternative algorithm is based on optimizing g(θ) given a constraint on the value of the likelihood function.  相似文献   
124.
Because outliers and leverage observations unduly affect the least squares regression, the identification of influential observations is considered an important and integrai part of the analysis. However, very few techniques have been developed for the residual analysis and diagnostics for the minimum sum of absolute errors, L1 regression. Although the L1 regression is more resistant to the outliers than the least squares regression, it appears that outliers (leverage) in the predictor variables may affect it. In this paper, our objective is to develop an influence measure for the L1 regression based on the likelihood displacement function. We illustrate the proposed influence measure with examples.  相似文献   
125.
We define and compute a boundary kernel for local polynomial regression, We prove that the new kernel provides improvement over the existing kernels, Simulations show the improvement in finite samples.  相似文献   
126.
127.
The joint effect of the deletion of the ith and jih cases is given by Gray and Ling (1984), they discussed the influence measures for influential subsets in linear regression analysis. The present paper is concerned with multiple sets of deletion measures in the linear regression model. In particular we are interested in the effects of the jointly and conditional influence analysis for the detection of two influential subsets.  相似文献   
128.
Abstract

In statistical hypothesis testing, a p-value is expected to be distributed as the uniform distribution on the interval (0, 1) under the null hypothesis. However, some p-values, such as the generalized p-value and the posterior predictive p-value, cannot be assured of this property. In this paper, we propose an adaptive p-value calibration approach, and show that the calibrated p-value is asymptotically distributed as the uniform distribution. For Behrens–Fisher problem and goodness-of-fit test under a normal model, the calibrated p-values are constructed and their behavior is evaluated numerically. Simulations show that the calibrated p-values are superior than original ones.  相似文献   
129.
ABSTRACT

The most important factor in kernel regression is a choice of a bandwidth. Considerable attention has been paid to extension the idea of an iterative method known for a kernel density estimate to kernel regression. Data-driven selectors of the bandwidth for kernel regression are considered. The proposed method is based on an optimally balanced relation between the integrated variance and the integrated square bias. This approach leads to an iterative quadratically convergent process. The analysis of statistical properties shows the rationale of the proposed method. In order to see statistical properties of this method the consistency is determined. The utility of the method is illustrated through a simulation study and real data applications.  相似文献   
130.
Abstract

Variable selection is a fundamental challenge in statistical learning if one works with data sets containing huge amount of predictors. In this artical we consider procedures popular in model selection: Lasso and adaptive Lasso. Our goal is to investigate properties of estimators based on minimization of Lasso-type penalized empirical risk with a convex loss function, in particular nondifferentiable. We obtain theorems concerning rate of convergence in estimation, consistency in model selection and oracle properties for Lasso estimators if the number of predictors is fixed, i.e. it does not depend on the sample size. Moreover, we study properties of Lasso and adaptive Lasso estimators on simulated and real data sets.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号