首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4376篇
  免费   93篇
  国内免费   44篇
管理学   76篇
民族学   16篇
人口学   13篇
丛书文集   405篇
理论方法论   121篇
综合类   2784篇
社会学   64篇
统计学   1034篇
  2024年   10篇
  2023年   17篇
  2022年   29篇
  2021年   41篇
  2020年   44篇
  2019年   68篇
  2018年   94篇
  2017年   126篇
  2016年   62篇
  2015年   97篇
  2014年   186篇
  2013年   533篇
  2012年   225篇
  2011年   260篇
  2010年   186篇
  2009年   224篇
  2008年   226篇
  2007年   318篇
  2006年   287篇
  2005年   277篇
  2004年   279篇
  2003年   222篇
  2002年   224篇
  2001年   151篇
  2000年   96篇
  1999年   35篇
  1998年   17篇
  1997年   33篇
  1996年   30篇
  1995年   11篇
  1994年   18篇
  1993年   13篇
  1992年   13篇
  1991年   8篇
  1990年   8篇
  1989年   4篇
  1987年   3篇
  1985年   4篇
  1984年   10篇
  1983年   6篇
  1982年   6篇
  1981年   4篇
  1980年   4篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
排序方式: 共有4513条查询结果,搜索用时 15 毫秒
81.
The paper derives Bartlett corrections for improving the chisquare approximation to the likelihood ratio statistics in a class of location-scale family of distributions, which encompasses the elliptical family of distributions and also asymmetric distributions such as the extreme value distributions. We present, in matrix notation, a Bartlett corrected likelihood ratio statistic for testing that a subset of the nonlinear regression coefficients in this class of models equals a given vector of constants. The formulae derived are simple enough to be used analytically to obtain several Bartlett corrections in a variety of important models. We show that these formulae generalize a number of previously published results. We also present simulation results comparing the sizes and powers of the usual likelihood ratio tests and their Bartlett corrected versions when the scale parameter is considered known and when this parameter is uncorrectly specified.  相似文献   
82.
The main object of this paper is to consider structural comparative calibration models under the assumption that the unknown quantity being measured is not identically distributed for all units. We consider the situation where the mean of the unknown quantity being measured is different within subgroups of the population. Method of moments and maximum likelihood estimators are considered for estimating the parameters in the model. Large sample inference is facilitated by the derivation of the asymptotic variances. An application to a data set which indeed motivated the consideration of such general model and was obtained by measuring the heights of a group of trees with five different instruments is considered.  相似文献   
83.
ABSTRACT

We study the estimation of a hazard rate function based on censored data by non-linear wavelet method. We provide an asymptotic formula for the mean integrated squared error (MISE) of nonlinear wavelet-based hazard rate estimators under randomly censored data. We show this MISE formula, when the underlying hazard rate function and censoring distribution function are only piecewise smooth, has the same expansion as analogous kernel estimators, a feature not available for the kernel estimators. In addition, we establish an asymptotic normality of the nonlinear wavelet estimator.  相似文献   
84.
ABSTRACT

Let {yt } be a Poisson-like process with the mean μ t which is a periodic function of time t. We discuss how to fit this type of data set using quasi-likelihood method. Our method provides a new avenue to fit a time series data when the usual assumption of stationarity and homogeneous residual variances are invalid. We show that the estimators obtained are strongly consistent and also asymptotically normal.  相似文献   
85.
ABSTRACT

The search for optimal non-parametric estimates of the cumulative distribution and hazard functions under order constraints inspired at least two earlier classic papers in mathematical statistics: those of Kiefer and Wolfowitz[1] Kiefer, J. and Wolfowitz, J. 1976. Asymptotically Minimax Estimation of Concave and Convex Distribution Functions. Z. Wahrsch. Verw. Gebiete, 34: 7385. [Crossref], [Web of Science ®] [Google Scholar] and Grenander[2] Grenander, U. 1956. On the Theory of Mortality Measurement. Part II. Scand. Aktuarietidskrift J., 39: 125153.  [Google Scholar] respectively. In both cases, either the greatest convex minorant or the least concave majorant played a fundamental role. Based on Kiefer and Wolfowitz's work, Wang3-4 Wang, J.L. 1986. Asymptotically Minimax Estimators for Distributions with Increasing Failure Rate. Ann. Statist., 14: 11131131. Wang, J.L. 1987. Estimators of a Distribution Function with Increasing Failure Rate Average. J. Statist. Plann. Inference, 16: 415427.   found asymptotically minimax estimates of the distribution function F and its cumulative hazard function Λ in the class of all increasing failure rate (IFR) and all increasing failure rate average (IFRA) distributions. In this paper, we will prove limit theorems which extend Wang's asymptotic results to the mixed censorship/truncation model as well as provide some other relevant results. The methods are illustrated on the Channing House data, originally analysed by Hyde.5-6 Hyde, J. 1977. Testing Survival Under Right Censoring and Left Truncation. Biometrika, 64: 225230. Hyde, J. 1980. “Survival Analysis with Incomplete Observations”. In Biostatistics Casebook 3146. New York: Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics.    相似文献   
86.
ABSTRACT

We consider the variance estimation in a general nonparametric regression model with multiple covariates. We extend difference methods to the multivariate setting by introducing an algorithm that orders the design points in higher dimensions. We also consider an adaptive difference estimator which requires much less strict assumptions on the covariate design and can significantly reduce mean squared error for small sample sizes.  相似文献   
87.
ABSTRACT

In the empirical Bayes (EB) decision problem consisting of squared error estimation of the failure rate in exponential distribution, a prior Λ is placed on the gamma family of prior distributions to produce Bayes EB estimators which are admissible. A subclass of such estimators is shown to be asymptotically optimal (a.o.). The results of a Monte Carlo study are presented to demonstrate the a.o. property of the Bayes EB estimators.  相似文献   
88.
89.
Abstract

In a recent article Hsueh et al. (Hsueh, H.-M., Liu, J.-P., Chen, J. J. (2001 Hsueh, H.-M., Liu, J.-P. and Chen, J. J. 2001. Unconditional exact tests for equivalence or noninferiority for paired binary endpoints. Biometrics, 57: 478483. [Crossref], [PubMed], [Web of Science ®] [Google Scholar]). Unconditional exact tests for equivalence or noninferiority for paired binary endpoints. Biometrics 57:478–483.) considered unconditional exact tests for paired binary endpoints. They suggested two statistics one of which is based on the restricted maximum-likelihood estimator. Properties of these statistics and the related tests are treated in this article.  相似文献   
90.
The asymptotic distribution of the sup-norm of the heavily weighted empirical process is established in the multidimensional case. This theorem extends in particular the famous result in Jaeschke (1975, 1979) to higher dimensions. There is a striking difference between the behaviour for higher dimensions and that for dimension one, especially the limiting distribution is now a simple transformation of a standard exponential random variable.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号