首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   925篇
  免费   21篇
  国内免费   1篇
管理学   34篇
民族学   2篇
人口学   3篇
丛书文集   15篇
理论方法论   13篇
综合类   94篇
社会学   9篇
统计学   777篇
  2023年   8篇
  2022年   6篇
  2021年   5篇
  2020年   16篇
  2019年   25篇
  2018年   26篇
  2017年   58篇
  2016年   13篇
  2015年   22篇
  2014年   23篇
  2013年   319篇
  2012年   86篇
  2011年   20篇
  2010年   19篇
  2009年   38篇
  2008年   24篇
  2007年   26篇
  2006年   20篇
  2005年   27篇
  2004年   17篇
  2003年   14篇
  2002年   25篇
  2001年   14篇
  2000年   14篇
  1999年   8篇
  1998年   8篇
  1997年   7篇
  1996年   3篇
  1995年   6篇
  1994年   6篇
  1993年   3篇
  1992年   6篇
  1991年   2篇
  1990年   5篇
  1989年   4篇
  1988年   1篇
  1987年   2篇
  1986年   3篇
  1985年   1篇
  1984年   1篇
  1983年   6篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   3篇
  1976年   1篇
  1975年   1篇
排序方式: 共有947条查询结果,搜索用时 171 毫秒
31.
Remote sensing of the earth with satellites yields datasets that can be massive in size, nonstationary in space, and non‐Gaussian in distribution. To overcome computational challenges, we use the reduced‐rank spatial random effects (SRE) model in a statistical analysis of cloud‐mask data from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on board NASA's Terra satellite. Parameterisations of cloud processes are the biggest source of uncertainty and sensitivity in different climate models’ future projections of Earth's climate. An accurate quantification of the spatial distribution of clouds, as well as a rigorously estimated pixel‐scale clear‐sky‐probability process, is needed to establish reliable estimates of cloud‐distributional changes and trends caused by climate change. Here we give a hierarchical spatial‐statistical modelling approach for a very large spatial dataset of 2.75 million pixels, corresponding to a granule of MODIS cloud‐mask data, and we use spatial change‐of‐Support relationships to estimate cloud fraction at coarser resolutions. Our model is non‐Gaussian; it postulates a hidden process for the clear‐sky probability that makes use of the SRE model, EM‐estimation, and optimal (empirical Bayes) spatial prediction of the clear‐sky‐probability process. Measures of prediction uncertainty are also given.  相似文献   
32.
In this paper, we develop Bayes factor based testing procedures for the presence of a correlation or a partial correlation. The proposed Bayesian tests are obtained by restricting the class of the alternative hypotheses to maximize the probability of rejecting the null hypothesis when the Bayes factor is larger than a specified threshold. It turns out that they depend simply on the frequentist t-statistics with the associated critical values and can thus be easily calculated by using a spreadsheet in Excel and in fact by just adding one more step after one has performed the frequentist correlation tests. In addition, they are able to yield an identical decision with the frequentist paradigm, provided that the evidence threshold of the Bayesian tests is determined by the significance level of the frequentist paradigm. We illustrate the performance of the proposed procedures through simulated and real-data examples.  相似文献   
33.
In this paper, we consider the problem of making statistical inference for a truncated normal distribution under progressive type I interval censoring. We obtain maximum likelihood estimators of unknown parameters using the expectation-maximization algorithm and in sequel, we also compute corresponding midpoint estimates of parameters. Estimation based on the probability plot method is also considered. Asymptotic confidence intervals of unknown parameters are constructed based on the observed Fisher information matrix. We obtain Bayes estimators of parameters with respect to informative and non-informative prior distributions under squared error and linex loss functions. We compute these estimates using the importance sampling procedure. The highest posterior density intervals of unknown parameters are constructed as well. We present a Monte Carlo simulation study to compare the performance of proposed point and interval estimators. Analysis of a real data set is also performed for illustration purposes. Finally, inspection times and optimal censoring plans based on the expected Fisher information matrix are discussed.  相似文献   
34.
This paper addresses the problems of frequentist and Bayesian estimation for the unknown parameters of generalized Lindley distribution based on lower record values. We first derive the exact explicit expressions for the single and product moments of lower record values, and then use these results to compute the means, variances and covariance between two lower record values. We next obtain the maximum likelihood estimators and associated asymptotic confidence intervals. Furthermore, we obtain Bayes estimators under the assumption of gamma priors on both the shape and the scale parameters of the generalized Lindley distribution, and associated the highest posterior density interval estimates. The Bayesian estimation is studied with respect to both symmetric (squared error) and asymmetric (linear-exponential (LINEX)) loss functions. Finally, we compute Bayesian predictive estimates and predictive interval estimates for the future record values. To illustrate the findings, one real data set is analyzed, and Monte Carlo simulations are performed to compare the performances of the proposed methods of estimation and prediction.  相似文献   
35.
Networks of ambient monitoring stations are used to monitor environmental pollution fields such as those for acid rain and air pollution. Such stations provide regular measurements of pollutant concentrations. The networks are established for a variety of purposes at various times so often several stations measuring different subsets of pollutant concentrations can be found in compact geographical regions. The problem of statistically combining these disparate information sources into a single 'network' then arises. Capitalizing on the efficiencies so achieved can then lead to the secondary problem of extending this network. The subject of this paper is a set of 31 air pollution monitoring stations in southern Ontario. Each of these regularly measures a particular subset of ionic sulphate, sulphite, nitrite and ozone. However, this subset varies from station to station. For example only two stations measure all four. Some measure just one. We describe a Bayesian framework for integrating the measurements of these stations to yield a spatial predictive distribution for unmonitored sites and unmeasured concentrations at existing stations. Furthermore we show how this network can be extended by using an entropy maximization criterion. The methods assume that the multivariate response field being measured has a joint Gaussian distribution conditional on its mean and covariance function. A conjugate prior is used for these parameters, some of its hyperparameters being fitted empirically.  相似文献   
36.
The authors consider the correlation between two arbitrary functions of the data and a parameter when the parameter is regarded as a random variable with given prior distribution. They show how to compute such a correlation and use closed form expressions to assess the dependence between parameters and various classical or robust estimators thereof, as well as between p‐values and posterior probabilities of the null hypothesis in the one‐sided testing problem. Other applications involve the Dirichlet process and stationary Gaussian processes. Using this approach, the authors also derive a general nonparametric upper bound on Bayes risks.  相似文献   
37.
This paper concerns the geometric treatment of graphical models using Bayes linear methods. We introduce Bayes linear separation as a second order generalised conditional independence relation, and Bayes linear graphical models are constructed using this property. A system of interpretive and diagnostic shadings are given, which summarise the analysis over the associated moral graph. Principles of local computation are outlined for the graphical models, and an algorithm for implementing such computation over the junction tree is described. The approach is illustrated with two examples. The first concerns sales forecasting using a multivariate dynamic linear model. The second concerns inference for the error variance matrices of the model for sales, and illustrates the generality of our geometric approach by treating the matrices directly as random objects. The examples are implemented using a freely available set of object-oriented programming tools for Bayes linear local computation and graphical diagnostic display.  相似文献   
38.
Empirical Bayes is a versatile approach to “learn from a lot” in two ways: first, from a large number of variables and, second, from a potentially large amount of prior information, for example, stored in public repositories. We review applications of a variety of empirical Bayes methods to several well‐known model‐based prediction methods, including penalized regression, linear discriminant analysis, and Bayesian models with sparse or dense priors. We discuss “formal” empirical Bayes methods that maximize the marginal likelihood but also more informal approaches based on other data summaries. We contrast empirical Bayes to cross‐validation and full Bayes and discuss hybrid approaches. To study the relation between the quality of an empirical Bayes estimator and p, the number of variables, we consider a simple empirical Bayes estimator in a linear model setting. We argue that empirical Bayes is particularly useful when the prior contains multiple parameters, which model a priori information on variables termed “co‐data”. In particular, we present two novel examples that allow for co‐data: first, a Bayesian spike‐and‐slab setting that facilitates inclusion of multiple co‐data sources and types and, second, a hybrid empirical Bayes–full Bayes ridge regression approach for estimation of the posterior predictive interval.  相似文献   
39.
ABSTRACT

Researchers commonly use p-values to answer the question: How strongly does the evidence favor the alternative hypothesis relative to the null hypothesis? p-Values themselves do not directly answer this question and are often misinterpreted in ways that lead to overstating the evidence against the null hypothesis. Even in the “post p?<?0.05 era,” however, it is quite possible that p-values will continue to be widely reported and used to assess the strength of evidence (if for no other reason than the widespread availability and use of statistical software that routinely produces p-values and thereby implicitly advocates for their use). If so, the potential for misinterpretation will persist. In this article, we recommend three practices that would help researchers more accurately interpret p-values. Each of the three recommended practices involves interpreting p-values in light of their corresponding “Bayes factor bound,” which is the largest odds in favor of the alternative hypothesis relative to the null hypothesis that is consistent with the observed data. The Bayes factor bound generally indicates that a given p-value provides weaker evidence against the null hypothesis than typically assumed. We therefore believe that our recommendations can guard against some of the most harmful p-value misinterpretations. In research communities that are deeply attached to reliance on “p?<?0.05,” our recommendations will serve as initial steps away from this attachment. We emphasize that our recommendations are intended merely as initial, temporary steps and that many further steps will need to be taken to reach the ultimate destination: a holistic interpretation of statistical evidence that fully conforms to the principles laid out in the ASA statement on statistical significance and p-values.  相似文献   
40.
Kernel discriminant analysis translates the original classification problem into feature space and solves the problem with dimension and sample size interchanged. In high‐dimension low sample size (HDLSS) settings, this reduces the ‘dimension’ to that of the sample size. For HDLSS two‐class problems we modify Mika's kernel Fisher discriminant function which – in general – remains ill‐posed even in a kernel setting; see Mika et al. (1999). We propose a kernel naive Bayes discriminant function and its smoothed version, using first‐ and second‐degree polynomial kernels. For fixed sample size and increasing dimension, we present asymptotic expressions for the kernel discriminant functions, discriminant directions and for the error probability of our kernel discriminant functions. The theoretical calculations are complemented by simulations which show the convergence of the estimators to the population quantities as the dimension grows. We illustrate the performance of the new discriminant rules, which are easy to implement, on real HDLSS data. For such data, our results clearly demonstrate the superior performance of the new discriminant rules, and especially their smoothed versions, over Mika's kernel Fisher version, and typically also over the commonly used naive Bayes discriminant rule.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号