首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2858篇
  免费   79篇
  国内免费   3篇
管理学   265篇
人口学   11篇
丛书文集   10篇
理论方法论   32篇
综合类   53篇
社会学   24篇
统计学   2545篇
  2023年   37篇
  2022年   31篇
  2021年   40篇
  2020年   51篇
  2019年   119篇
  2018年   123篇
  2017年   240篇
  2016年   103篇
  2015年   94篇
  2014年   125篇
  2013年   616篇
  2012年   285篇
  2011年   93篇
  2010年   88篇
  2009年   108篇
  2008年   79篇
  2007年   82篇
  2006年   80篇
  2005年   71篇
  2004年   67篇
  2003年   44篇
  2002年   45篇
  2001年   40篇
  2000年   50篇
  1999年   37篇
  1998年   36篇
  1997年   23篇
  1996年   14篇
  1995年   9篇
  1994年   16篇
  1993年   13篇
  1992年   20篇
  1991年   17篇
  1990年   5篇
  1989年   7篇
  1988年   7篇
  1987年   3篇
  1986年   3篇
  1985年   4篇
  1984年   2篇
  1983年   3篇
  1982年   5篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1975年   1篇
排序方式: 共有2940条查询结果,搜索用时 0 毫秒
61.
In dental implant research studies, events such as implant complications including pain or infection may be observed recurrently before failure events, i.e. the death of implants. It is natural to assume that recurrent events and failure events are correlated to each other, since they happen on the same implant (subject) and complication times have strong effects on the implant survival time. On the other hand, each patient may have more than one implant. Therefore these recurrent events or failure events are clustered since implant complication times or failure times within the same patient (cluster) are likely to be correlated. The overall implant survival times and recurrent complication times are both interesting to us. In this paper, a joint modelling approach is proposed for modelling complication events and dental implant survival times simultaneously. The proposed method uses a frailty process to model the correlation within cluster and the correlation within subjects. We use Bayesian methods to obtain estimates of the parameters. Performance of the joint models are shown via simulation studies and data analysis.  相似文献   
62.
In this paper, the maximum likelihood (ML) and Bayes, by using Markov chain Monte Carlo (MCMC), methods are considered to estimate the parameters of three-parameter modified Weibull distribution (MWD(β, τ, λ)) based on a right censored sample of generalized order statistics (gos). Simulation experiments are conducted to demonstrate the efficiency of the proposed methods. Some comparisons are carried out between the ML and Bayes methods by computing the mean squared errors (MSEs), Akaike's information criteria (AIC) and Bayesian information criteria (BIC) of the estimates to illustrate the paper. Three real data sets from Weibull(α, β) distribution are introduced and analyzed using the MWD(β, τ, λ) and also using the Weibull(α, β) distribution. A comparison is carried out between the mentioned models based on the corresponding Kolmogorov–Smirnov (KS) test statistic, {AIC and BIC} to emphasize that the MWD(β, τ, λ) fits the data better than the other distribution. All parameters are estimated based on type-II censored sample, censored upper record values and progressively type-II censored sample which are generated from the real data sets.  相似文献   
63.
Comparison of accuracy between two diagnostic tests can be implemented by investigating the difference in paired Youden indices. However, few literature articles have discussed the inferences for the difference in paired Youden indices. In this paper, we propose an exact confidence interval for the difference in paired Youden indices based on the generalized pivotal quantities. For comparison, the maximum likelihood estimate‐based interval and a bootstrap‐based interval are also included in the study for the difference in paired Youden indices. Abundant simulation studies are conducted to compare the relative performance of these intervals by evaluating the coverage probability and average interval length. Our simulation results demonstrate that the exact confidence interval outperforms the other two intervals even with small sample size when the underlying distributions are normal. A real application is also used to illustrate the proposed intervals. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
64.
A fast and accurate method of confidence interval construction for the smoothing parameter in penalised spline and partially linear models is proposed. The method is akin to a parametric percentile bootstrap where Monte Carlo simulation is replaced by saddlepoint approximation, and can therefore be viewed as an approximate bootstrap. It is applicable in a quite general setting, requiring only that the underlying estimator be the root of an estimating equation that is a quadratic form in normal random variables. This is the case under a variety of optimality criteria such as those commonly denoted by maximum likelihood (ML), restricted ML (REML), generalized cross validation (GCV) and Akaike's information criteria (AIC). Simulation studies reveal that under the ML and REML criteria, the method delivers a near‐exact performance with computational speeds that are an order of magnitude faster than existing exact methods, and two orders of magnitude faster than a classical bootstrap. Perhaps most importantly, the proposed method also offers a computationally feasible alternative when no known exact or asymptotic methods exist, e.g. GCV and AIC. An application is illustrated by applying the methodology to well‐known fossil data. Giving a range of plausible smoothed values in this instance can help answer questions about the statistical significance of apparent features in the data.  相似文献   
65.
The spread of an emerging infectious disease is a major public health threat. Given the uncertainties associated with vector-borne diseases, in terms of vector dynamics and disease transmission, it is critical to develop statistical models that address how and when such an infectious disease could spread throughout a region such as the USA. This paper considers a spatio-temporal statistical model for how an infectious disease could be carried into the USA by migratory waterfowl vectors during their seasonal migration and, ultimately, the risk of transmission of such a disease to domestic fowl. Modeling spatio-temporal data of this type is inherently difficult given the uncertainty associated with observations, complexity of the dynamics, high dimensionality of the underlying process, and the presence of excessive zeros. In particular, the spatio-temporal dynamics of the waterfowl migration are developed by way of a two-tiered functional temporal and spatial dimension reduction procedure that captures spatial and seasonal trends, as well as regional dynamics. Furthermore, the model relates the migration to a population of poultry farms that are known to be susceptible to such diseases, and is one of the possible avenues toward transmission to domestic poultry and humans. The result is a predictive distribution of those counties containing poultry farms that are at the greatest risk of having the infectious disease infiltrate their flocks assuming that the migratory population was infected. The model naturally fits into the hierarchical Bayesian framework.  相似文献   
66.
Assessing the selective influence of amino acid properties is important in understanding evolution at the molecular level. A collection of methods and models has been developed in recent years to determine if amino acid sites in a given DNA sequence alignment display substitutions that are altering or conserving a prespecified set of amino acid properties. Residues showing an elevated number of substitutions that favorably alter a physicochemical property are considered targets of positive natural selection. Such approaches usually perform independent analyses for each amino acid property under consideration, without taking into account the fact that some of the properties may be highly correlated. We propose a Bayesian hierarchical regression model with latent factor structure that allows us to determine which sites display substitutions that conserve or radically change a set of amino acid properties, while accounting for the correlation structure that may be present across such properties. We illustrate our approach by analyzing simulated data sets and an alignment of lysin sperm DNA.  相似文献   
67.
Standard methods for analyzing binomial regression data rely on asymptotic inferences. Bayesian methods can be performed using simple computations, and they apply for any sample size. We provide a relatively complete discussion of Bayesian inferences for binomial regression with emphasis on inferences for the probability of “success.” Furthermore, we illustrate diagnostic tools, perform model selection among nonnested models, and examine the sensitivity of the Bayesian methods.  相似文献   
68.
69.
This article examines a semiparametric test for checking the constancy of serial dependence via copula models for Markov time series. A semiparametric score test is proposed for testing the constancy of the copula parameter against stochastically varying copula parameter. The asymptotic null distribution of the test is established. A semiparametric bootstrap procedure is employed for the estimation of the variance of the proposed score test. Illustrations are given based on simulated series and historic interest rate data.  相似文献   
70.
In this paper, we consider the estimation of the stress–strength parameter R=P(Y<X) when X and Y are independent and both are modified Weibull distributions with the common two shape parameters but different scale parameters. The Markov Chain Monte Carlo sampling method is used for posterior inference of the reliability of the stress–strength model. The maximum-likelihood estimator of R and its asymptotic distribution are obtained. Based on the asymptotic distribution, the confidence interval of R can be obtained using the delta method. We also propose a bootstrap confidence interval of R. The Bayesian estimators with balanced loss function, using informative and non-informative priors, are derived. Different methods and the corresponding confidence intervals are compared using Monte Carlo simulations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号