首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   731篇
  免费   5篇
  国内免费   2篇
管理学   10篇
人口学   4篇
理论方法论   1篇
综合类   1篇
社会学   1篇
统计学   721篇
  2023年   1篇
  2022年   4篇
  2021年   2篇
  2020年   12篇
  2019年   20篇
  2018年   19篇
  2017年   40篇
  2016年   10篇
  2015年   13篇
  2014年   16篇
  2013年   350篇
  2012年   62篇
  2011年   18篇
  2010年   19篇
  2009年   14篇
  2008年   10篇
  2007年   9篇
  2006年   6篇
  2005年   11篇
  2004年   8篇
  2003年   8篇
  2002年   5篇
  2001年   10篇
  2000年   6篇
  1999年   6篇
  1998年   8篇
  1997年   5篇
  1996年   2篇
  1995年   2篇
  1994年   3篇
  1993年   2篇
  1992年   5篇
  1991年   2篇
  1990年   3篇
  1989年   3篇
  1988年   3篇
  1987年   3篇
  1986年   3篇
  1985年   1篇
  1984年   4篇
  1983年   3篇
  1982年   2篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有738条查询结果,搜索用时 0 毫秒
101.
We formulate Bayesian approaches to the problems of determining the required sample size for Bayesian interval estimators of a predetermined length for a single Poisson rate, for the difference between two Poisson rates, and for the ratio of two Poisson rates. We demonstrate the efficacy of our Bayesian-based sample-size determination method with two real-data quality-control examples and compare the results to frequentist sample-size determination methods.  相似文献   
102.
Numerous papers have considered the problem of comparing univariate measures of dispersion corresponding to two independent groups. This paper considers a multivariate generalization of this problem where the goal is to compare robust generalized variances. For reasons given in the paper, attention is focused on a particular W-estimator where multivariate outliers are downweighted via a projection-type outlier detection method. Included are results on the small-sample efficiency of several estimators plus comments on using the usual generalized variance.  相似文献   
103.
In this article, we have developed asymptotic theory for the simultaneous estimation of the k means of arbitrary populations under the common mean hypothesis and further assuming that corresponding population variances are unknown and unequal. The unrestricted estimator, the Graybill-Deal-type restricted estimator, the preliminary test, and the Stein-type shrinkage estimators are suggested. A large sample test statistic is also proposed as a pretest for testing the common mean hypothesis. Under the sequence of local alternatives and squared error loss, we have compared the asymptotic properties of the estimators by means of asymptotic distributional quadratic bias and risk. Comprehensive Monte-Carlo simulation experiments were conducted to study the relative risk performance of the estimators with reference to the unrestricted estimator in finite samples. Two real-data examples are also furnished to illustrate the application of the suggested estimation strategies.  相似文献   
104.
Kadilar and Cingi [Ratio estimators in simple random sampling, Appl. Math. Comput. 151 (3) (2004), pp. 893–902] introduced some ratio-type estimators of finite population mean under simple random sampling. Recently, Kadilar and Cingi [New ratio estimators using correlation coefficient, Interstat 4 (2006), pp. 1–11] have suggested another form of ratio-type estimators by modifying the estimator developed by Singh and Tailor [Use of known correlation coefficient in estimating the finite population mean, Stat. Transit. 6 (2003), pp. 655–560]. Kadilar and Cingi [Improvement in estimating the population mean in simple random sampling, Appl. Math. Lett. 19 (1) (2006), pp. 75–79] have suggested yet another class of ratio-type estimators by taking a weighted average of the two known classes of estimators referenced above. In this article, we propose an alternative form of ratio-type estimators which are better than the competing ratio, regression, and other ratio-type estimators considered here. The results are also supported by the analysis of three real data sets that were considered by Kadilar and Cingi.  相似文献   
105.
Abstract.  We consider estimation of the upper boundary point F −1 (1) of a distribution function F with finite upper boundary or 'frontier' in deconvolution problems, primarily focusing on deconvolution models where the noise density is decreasing on the positive halfline. Our estimates are based on the (non-parametric) maximum likelihood estimator (MLE) of F . We show that (1) is asymptotically never too small. If the convolution kernel has bounded support the estimator (1) can generally be expected to be consistent. In this case, we establish a relation between the extreme value index of F and the rate of convergence of (1) to the upper support point for the 'boxcar' deconvolution model. If the convolution density has unbounded support, (1) can be expected to overestimate the upper support point. We define consistent estimators , for appropriately chosen vanishing sequences ( β n ) and study these in a particular case.  相似文献   
106.
In one-way ANOVA, most of the pairwise multiple comparison procedures depend on normality assumption of errors. In practice, errors have non-normal distributions so frequently. Therefore, it is very important to develop robust estimators of location and the associated variance under non-normality. In this paper, we consider the estimation of one-way ANOVA model parameters to make pairwise multiple comparisons under short-tailed symmetric (STS) distribution. The classical least squares method is neither efficient nor robust and maximum likelihood estimation technique is problematic in this situation. Modified maximum likelihood (MML) estimation technique gives the opportunity to estimate model parameters in closed forms under non-normal distributions. Hence, the use of MML estimators in the test statistic is proposed for pairwise multiple comparisons under STS distribution. The efficiency and power comparisons of the test statistic based on sample mean, trimmed mean, wave and MML estimators are given and the robustness of the test obtained using these estimators under plausible alternatives and inlier model are examined. It is demonstrated that the test statistic based on MML estimators is efficient and robust and the corresponding test is more powerful and having smallest Type I error.  相似文献   
107.
The problem of estimating ordered quantiles of two exponential populations is considered, assuming equality of location parameters (minimum guarantee times), using the quadratic loss function. Under order restrictions, we propose new estimators which are the isotonized version of the MLEs, call it, restricted MLE. A sufficient condition for improving equivariant estimators is derived under order restrictions on the quantiles. Consequently, estimators improving upon the old estimators have been derived. A detailed numerical study has been done to evaluate the performance of proposed estimators using the Monte-Carlo simulation method and recommendations have been made for the use of the estimators.  相似文献   
108.
Simulation results are reported on methods that allow both within group and between group heteroscedasticity when testing the hypothesis that independent groups have identical regression parameters. The methods are based on a combination of extant techniques, but their finite-sample properties have not been studied. Included are results on the impact of removing all leverage points or just bad leverage points. The method used to identify leverage points can be important and can improve control over the Type I error probability. Results are illustrated using data from the Well Elderly II study.  相似文献   
109.
Data censoring causes ordinary least-square estimators of linear models to be biased and inconsistent. The Tobit estimator yields consistent estimators in the presence of data censoring if the errors are normally distributed. However, nonnormality or heteroscedasticity results in the Tobit estimators being inconsistent. Various estimators have been proposed for circumventing the normality assumption. Some of these estimators include censored least absolute deviations (CLAD), symmetrically censored least-square (SCLS), and partially adaptive estimators. CLAD and SCLS will be consistent in the presence of heteroscedasticity; however, SCLS performs poorly in the presence of asymmetric errors. This article extends the partially adaptive estimation approach to accommodate possible heteroscedasticity as well as nonnormality. A simulation study is used to investigate the estimators’ relative performance in these settings. The partially adaptive censored regression estimators have little efficiency loss for censored normal errors and appear to outperform the Tobit and semiparametric estimators for nonnormal error distributions and be less sensitive to the presence of heteroscedasticity. An empirical example is considered, which supports these results.  相似文献   
110.
We study the asymptotics of L p estimators, p > 0, over a sample having a symmetric density with a sharp–point at the centre of symmetry of the distribution. The rates of convergence of the L p estimators in this situation depend on p and on the shape of the density. To obtain some of the limit distributions, we present new results in the asymptotics of M–estimators. We extend the delta method to the case when the Euclidean norm of the conveniently normalized M–estimators converge to a power of the Euclidean norm of a (possibly Gaussian) stable distribution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号