首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   678篇
  免费   19篇
管理学   32篇
丛书文集   1篇
综合类   6篇
统计学   658篇
  2023年   2篇
  2022年   3篇
  2021年   4篇
  2020年   14篇
  2019年   34篇
  2018年   25篇
  2017年   60篇
  2016年   18篇
  2015年   23篇
  2014年   26篇
  2013年   142篇
  2012年   107篇
  2011年   16篇
  2010年   23篇
  2009年   25篇
  2008年   16篇
  2007年   11篇
  2006年   15篇
  2005年   16篇
  2004年   13篇
  2003年   8篇
  2002年   13篇
  2001年   14篇
  2000年   16篇
  1999年   11篇
  1998年   9篇
  1997年   2篇
  1996年   5篇
  1995年   1篇
  1994年   2篇
  1993年   6篇
  1992年   9篇
  1991年   4篇
  1990年   2篇
  1989年   2篇
排序方式: 共有697条查询结果,搜索用时 0 毫秒
691.
Data snooping occurs when a given set of data is used more than once for purposes of inference or model selection. When such data reuse occurs, there is always the possibility that any satisfactory results obtained may simply be due to chance rather than to any merit inherent in the method yielding the results. This problem is practically unavoidable in the analysis of time‐series data, as typically only a single history measuring a given phenomenon of interest is available for analysis. It is widely acknowledged by empirical researchers that data snooping is a dangerous practice to be avoided, but in fact it is endemic. The main problem has been a lack of sufficiently simple practical methods capable of assessing the potential dangers of data snooping in a given situation. Our purpose here is to provide such methods by specifying a straightforward procedure for testing the null hypothesis that the best model encountered in a specification search has no predictive superiority over a given benchmark model. This permits data snooping to be undertaken with some degree of confidence that one will not mistake results that could have been generated by chance for genuinely good results.  相似文献   
692.
Nonseparable panel models are important in a variety of economic settings, including discrete choice. This paper gives identification and estimation results for nonseparable models under time‐homogeneity conditions that are like “time is randomly assigned” or “time is an instrument.” Partial‐identification results for average and quantile effects are given for discrete regressors, under static or dynamic conditions, in fully nonparametric and in semiparametric models, with time effects. It is shown that the usual, linear, fixed‐effects estimator is not a consistent estimator of the identified average effect, and a consistent estimator is given. A simple estimator of identified quantile treatment effects is given, providing a solution to the important problem of estimating quantile treatment effects from panel data. Bounds for overall effects in static and dynamic models are given. The dynamic bounds provide a partial‐identification solution to the important problem of estimating the effect of state dependence in the presence of unobserved heterogeneity. The impact of T, the number of time periods, is shown by deriving shrinkage rates for the identified set as T grows. We also consider semiparametric, discrete‐choice models and find that semiparametric panel bounds can be much tighter than nonparametric bounds. Computationally convenient methods for semiparametric models are presented. We propose a novel inference method that applies in panel data and other settings and show that it produces uniformly valid confidence regions in large samples. We give empirical illustrations.  相似文献   
693.
Propensity score matching has been a long-standing tradition for handling confounding in causal inference, however, requiring stringent model assumptions. In this article, we propose novel double score matching (DSM) utilizing both the propensity score and prognostic score. To gain the protection of possible model misspecification, we posit multiple candidate models for each score. We show that the debiasing DSM estimator achieves the multiple robustness property in that it is consistent if any one of the score models is correctly specified. We characterize the asymptotic distribution for the DSM estimator requiring only one correct model specification based on the martingale representations of the matching estimators and theory for local normal experiments. We also provide a two-stage replication method for variance estimation and extend DSM for quantile estimation. Simulation demonstrates DSM outperforms single-score matching and prevailing multiply robust weighting estimators in the presence of extreme propensity scores.  相似文献   
694.
ARCH and GARCH models directly address the dependency of conditional second moments, and have proved particularly valuable in modelling processes where a relatively large degree of fluctuation is present. These include financial time series, which can be particularly heavy tailed. However, little is known about properties of ARCH or GARCH models in the heavy–tailed setting, and no methods are available for approximating the distributions of parameter estimators there. In this paper we show that, for heavy–tailed errors, the asymptotic distributions of quasi–maximum likelihood parameter estimators in ARCH and GARCH models are nonnormal, and are particularly difficult to estimate directly using standard parametric methods. Standard bootstrap methods also fail to produce consistent estimators. To overcome these problems we develop percentile–t, subsample bootstrap approximations to estimator distributions. Studentizing is employed to approximate scale, and the subsample bootstrap is used to estimate shape. The good performance of this approach is demonstrated both theoretically and numerically.  相似文献   
695.
Entropy is a classical statistical concept with appealing properties. Establishing asymptotic distribution theory for smoothed nonparametric entropy measures of dependence has so far proved challenging. In this paper, we develop an asymptotic theory for a class of kernel‐based smoothed nonparametric entropy measures of serial dependence in a time‐series context. We use this theory to derive the limiting distribution of Granger and Lin's (1994) normalized entropy measure of serial dependence, which was previously not available in the literature. We also apply our theory to construct a new entropy‐based test for serial dependence, providing an alternative to Robinson's (1991) approach. To obtain accurate inferences, we propose and justify a consistent smoothed bootstrap procedure. The naive bootstrap is not consistent for our test. Our test is useful in, for example, testing the random walk hypothesis, evaluating density forecasts, and identifying important lags of a time series. It is asymptotically locally more powerful than Robinson's (1991) test, as is confirmed in our simulation. An application to the daily S&P 500 stock price index illustrates our approach.  相似文献   
696.
This paper considers distributed inference for two-sample U-statistics under the massive data setting. In order to reduce the computational complexity, this paper proposes distributed two-sample U-statistics and blockwise linear two-sample U-statistics. The blockwise linear two-sample U-statistic, which requires less communication cost, is more computationally efficient especially when the data are stored in different locations. The asymptotic properties of both types of distributed two-sample U-statistics are established. In addition, this paper proposes bootstrap algorithms to approximate the distributions of distributed two-sample U-statistics and blockwise linear two-sample U-statistics for both nondegenerate and degenerate cases. The distributed weighted bootstrap for the distributed two-sample U-statistic is new in the literature. The proposed bootstrap procedures are computationally efficient and are suitable for distributed computing platforms with theoretical guarantees. Extensive numerical studies illustrate that the proposed distributed approaches are feasible and effective.  相似文献   
697.
Matching estimators are widely used in empirical economics for the evaluation of programs or treatments. Researchers using matching methods often apply the bootstrap to calculate the standard errors. However, no formal justification has been provided for the use of the bootstrap in this setting. In this article, we show that the standard bootstrap is, in general, not valid for matching estimators, even in the simple case with a single continuous covariate where the estimator is root‐N consistent and asymptotically normally distributed with zero asymptotic bias. Valid inferential methods in this setting are the analytic asymptotic variance estimator of Abadie and Imbens (2006a) as well as certain modifications of the standard bootstrap, like the subsampling methods in Politis and Romano (1994).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号