首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   215篇
  免费   3篇
管理学   9篇
人口学   2篇
丛书文集   2篇
理论方法论   2篇
综合类   39篇
社会学   5篇
统计学   159篇
  2020年   4篇
  2019年   2篇
  2018年   5篇
  2017年   11篇
  2016年   4篇
  2015年   2篇
  2014年   4篇
  2013年   74篇
  2012年   11篇
  2011年   4篇
  2010年   5篇
  2009年   8篇
  2008年   7篇
  2007年   6篇
  2006年   4篇
  2005年   7篇
  2004年   7篇
  2003年   4篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1997年   2篇
  1996年   5篇
  1995年   6篇
  1994年   3篇
  1993年   5篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1984年   1篇
  1983年   2篇
  1982年   4篇
  1981年   3篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
排序方式: 共有218条查询结果,搜索用时 296 毫秒
11.
12.
Block-structured correlation matrices are correlation matrices in which the p variables are subdivided into homogeneous groups, with equal correlations for variables within each group, and equal correlations between any given pair of variables from different groups. Block-structured correlation matrices arise as approximations for certain data sets’ true correlation matrices. A block structure in a correlation matrix entails a certain number of properties regarding its eigendecomposition and, therefore, a principal component analysis of the underlying data. This paper explores these properties, both from an algebraic and a geometric perspective, and discusses their robustness. Suggestions are also made regarding the choice of variables to be subjected to a principal component analysis, when in the presence of (approximately) block-structured variables.  相似文献   
13.
Egmar Rödel 《Statistics》2013,47(4):573-585
Normed bivariate density funtions were introduced by HOEFFDING (1940/41). In the present paper estimators for normed bivariate ranks and on a FOURIER series expansion in LEGENDRE polynomials. The estimation of normed bivarate density functions under positive dependence is also described  相似文献   
14.
15.
研究具有实用价值的关于一般复方阵的非奇准则、秩的下界实用估计,特征值实部和虚部的平方和上界估计,所得结果改进了著名的 Schur 不等式和 Ky Fan-Hoffman 不等式的估计。  相似文献   
16.
In this paper, an infinite class of partially balanced incomplete block (PBIB) designs of m+1 associate classes is constructed through the use of a series of row-orthogonal matrices known as partially balanced orthogonal designs (PBOD) of m-associate classes. For the purpose, a series of PBOD is obtained through a method described herein. An infinite class of regular GD designs is also reported.  相似文献   
17.
This paper is heavily leaned on the author's recent investigations concerning SCHUR analysis of non-negative Hermitian block matrices. The parameters of the matrix balls and the triangular choice scheme which describe a non-negative Hermitian block matrix will be interpreted in the framework of correlation theory  相似文献   
18.
The relationship between the mixed-model analysis and multivariate approach to a repeated measures design with multiple responses is presented. It is shown that by taking the trace of the appropriate submatrix of the hypothesis (error) sums of squares and crossproducts (SSCP) matrix obtained from the multivariate approach, one can get the hypothesis (error) SSCP matrix for the mixed-model analysis. Thus, when analyzing data from a multivariate repeated measures design, it is advantageous to use the multivariate approach because the result of the mixed-model analysis can also be obtained without additional computation.  相似文献   
19.
以d1组态的简单晶体场理论为基础,根据点群的对称性及配体场势的可加和性原则,讨论了各配体场中d轨道分裂的相对能量的计算方法  相似文献   
20.
《随机性模型》2013,29(1):37-74
Starting from an abstract setting which extends the property “skip free to the left” for transition matrices to a partition of the state space, we develop bounds for the mean hitting time of a Markov chain to an arbitrary subset from an arbitrary initial law. We apply our theory to the embedded Markov chains associated with the M/G/1 and the GI/M/1 queueing systems. We also illustrate its applicability with an asymptotic analysis of a non-reversible Markovian star queueing network with losses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号