排序方式: 共有142条查询结果,搜索用时 15 毫秒
131.
ABSTRACTWe study partial linear models where the linear covariates are endogenous and cause an over-identified problem. We propose combining the profile principle with local linear approximation and the generalized moment methods (GMM) to estimate the parameters of interest. We show that the profiled GMM estimators are root? n consistent and asymptotically normally distributed. By appropriately choosing the weight matrix, the estimators can attain the efficiency bound. We further consider variable selection by using the moment restrictions imposed on endogenous variables when the dimension of the covariates may be diverging with the sample size, and propose a penalized GMM procedure, which is shown to have the sparsity property. We establish asymptotic normality of the resulting estimators of the nonzero parameters. Simulation studies have been presented to assess the finite-sample performance of the proposed procedure. 相似文献
132.
We summarize, review and comment upon three papers which discuss the use of discrete, noisy, incomplete, scattered pairwise dissimilarity data in statistical model building. Convex cone optimization codes are used to embed the objects into a Euclidean space which respects the dissimilarity information while controlling the dimension of the space. A “newbie” algorithm is provided for embedding new objects into this space. This allows the dissimilarity information to be incorporated into a smoothing spline ANOVA penalized likelihood model, a support vector machine, or any model that will admit reproducing kernel Hilbert space components, for nonparametric regression, supervised learning, or semisupervised learning. Future work and open questions are discussed. The papers are: 相似文献
133.
We studied properties of maximum likelihood estimators (MLEs) of the variance components obtained from balanced data of the one-way classification. Exact and asymptotic expected values and variances of these MLEs were derived under the usual normality assumptions. Numerical studies illustrate these expected values and variances, and also illustrate the probability of obtaining a negative solution to the maximum likelihood (ML) equation for the between-class variance component. Simulations were used to study the robustness of the ML estimators under non-normal distributions. 相似文献
134.
A method of estimation for generalised mixed models is applied to the estimation of regression parameters in a proportional hazards model with time dependent frailty. A parameter representing change over time is introduced and is modelled in turn into a fixed effect, a normally distributed random effect and a longitudinal effect in which the random component relates to the patient characteristics. Both maximum likelihood and residual maximum likelihood estimators are given. 相似文献
135.
Rolf Sundberg 《The American statistician》2018,72(2):155-157
Two dice are rolled repeatedly, only their sum is registered. Have the two dice been “shaved,” so two of the six sides appear more frequently? Pavlides and Perlman discussed this somewhat complicated type of situation through curved exponential families. Here, we contrast their approach by regarding data as incomplete data from a simple exponential family. The latter, supplementary approach is in some respects simpler, it provides additional insight about the relationships among the likelihood equation, the Fisher information, and the EM algorithm, and it illustrates the information content in ancillary statistics. 相似文献
136.
Based on the inverse probability weight method, we, in this article, construct the empirical likelihood (EL) and penalized empirical likelihood (PEL) ratios of the parameter in the linear quantile regression model when the covariates are missing at random, in the presence and absence of auxiliary information, respectively. It is proved that the EL ratio admits a limiting Chi-square distribution. At the same time, the asymptotic normality of the maximum EL and PEL estimators of the parameter is established. Also, the variable selection of the model in the presence and absence of auxiliary information, respectively, is discussed. Simulation study and a real data analysis are done to evaluate the performance of the proposed methods. 相似文献
137.
The penalized likelihood approach of Fan and Li (2001, 2002) differs from the traditional variable selection procedures in that it deletes the non-significant variables by estimating their coefficients as zero. Nevertheless, the desirable performance of this shrinkage methodology relies heavily on an appropriate selection of the tuning parameter which is involved in the penalty functions. In this work, new estimates of the norm of the error are firstly proposed through the use of Kantorovich inequalities and, subsequently, applied to the frailty models framework. These estimates are used in order to derive a tuning parameter selection procedure for penalized frailty models and clustered data. In contrast with the standard methods, the proposed approach does not depend on resampling and therefore results in a considerable gain in computational time. Moreover, it produces improved results. Simulation studies are presented to support theoretical findings and two real medical data sets are analyzed. 相似文献
138.
The linear regression models with the autoregressive moving average (ARMA) errors (REGARMA models) are often considered, in order to reflect a serial correlation among observations. In this article, we focus on an adaptive least absolute shrinkage and selection operator (LASSO) (ALASSO) method for the variable selection of the REGARMA models and extend it to the linear regression models with the ARMA-generalized autoregressive conditional heteroskedasticity (ARMA-GARCH) errors (REGARMA-GARCH models). This attempt is an extension of the existing ALASSO method for the linear regression models with the AR errors (REGAR models) proposed by Wang et al. in 2007. New ALASSO algorithms are proposed to determine important predictors for the REGARMA and REGARMA-GARCH models. Finally, we provide the simulation results and real data analysis to illustrate our findings. 相似文献
139.
Andrew D. A. C. Smith 《统计学通讯:理论与方法》2013,42(7):1363-1372
Quadratic programming is a versatile tool for calculating estimates in penalized regression. It can be used to produce estimates based on L 1 roughness penalties, as in total variation denoising. In particular, it can calculate estimates when the roughness penalty is the total variation of a derivative of the estimate. Combining two roughness penalties, the total variation and total variation of the third derivative, results in an estimate with continuous second derivative but controls the number of spurious local extreme values. A multiresolution criterion may be included in a quadratic program to achieve local smoothing without having to specify smoothing parameters. 相似文献
140.
Chin-Shang Li 《统计学通讯:理论与方法》2013,42(23):4240-4250
Cubic B-splines are used to estimate the nonparametric component of a semiparametric generalized linear model. A penalized log-likelihood ratio test statistic is constructed for the null hypothesis of the linearity of the nonparametric function. When the number of knots is fixed, its limiting null distribution is the distribution of a linear combination of independent chi-squared random variables, each with one df. The smoothing parameter is determined by giving a specified value for its asymptotically expected value under the null hypothesis. A simulation study is conducted to evaluate its power performance; a real-life dataset is used to illustrate its practical use. 相似文献