排序方式: 共有142条查询结果,搜索用时 0 毫秒
131.
The t-distribution (univariate and multivariate) has many useful applications in robust statistical analysis. The parameter estimation of the t-distribution is carried out using maximum likelihood (ML) estimation method, and the ML estimates are obtained via the Expectation-Maximization (EM) algorithm. In this article, we will use the maximum Lq-likelihood (MLq) estimation method introduced by Ferrari and Yang (2010) to estimate all the parameters of the multivariate t-distribution. We modify the EM algorithm to obtain the MLq estimates. We provide a simulation study and a real data example to illustrate the performance of the MLq estimators over the ML estimators. 相似文献
132.
Jianhua Ding 《统计学通讯:模拟与计算》2018,47(5):1315-1325
In this paper, we develop a Bayesian estimation procedure for semiparametric models under shape constrains. The approach uses a hierarchical Bayes framework and characterizations of shape-constrained B-splines. We employ Markov chain Monte Carlo methods for model fitting, using a truncated normal distribution as the prior for the coefficients of basis functions to ensure the desired shape constraints. The small sample properties of the function estimators are provided via simulation and compared with existing methods. A real data analysis is conducted to illustrate the application of the proposed method. 相似文献
133.
Stephen O. Nyangoma 《Australian & New Zealand Journal of Statistics》2003,45(1):67-82
This paper investigates bias in parameter estimates and residual diagnostics for parametric multinomial models by considering the effect of deleting a cell. In particular, it describes the average changes in the standardized residuals and maximum likelihood estimates resulting from conditioning on the given cells. These changes suggest how individual cell observations affect biases. Emphasis is placed on the role of individual cell observations in determining bias and on how bias affects standard diagnostic methods. Examples from genetics and log–linear models are considered. Numerical results show that conditioning on an influential cell results in substantial changes in biases. 相似文献
134.
The problem of ill-conditioning in generalized linear regression is investigated. Besides collinearity among the explanatory variables, we define another type of ill-conditioning, namely ML-collinearity, which has similar detrimental effects on the covariance matrix, e.g. inflation of some of the estimated standard errors of the regression coefficients. For either situation there is collinearity among the columns of the matrix of the weighted variables. We present both methods to detect, as well as practical examples to illustrate, the difference between these two types of ill-conditioning. Also the applicability of alternative regression methods will be reviewed. 相似文献
135.
ABSTRACTWe study partial linear models where the linear covariates are endogenous and cause an over-identified problem. We propose combining the profile principle with local linear approximation and the generalized moment methods (GMM) to estimate the parameters of interest. We show that the profiled GMM estimators are root? n consistent and asymptotically normally distributed. By appropriately choosing the weight matrix, the estimators can attain the efficiency bound. We further consider variable selection by using the moment restrictions imposed on endogenous variables when the dimension of the covariates may be diverging with the sample size, and propose a penalized GMM procedure, which is shown to have the sparsity property. We establish asymptotic normality of the resulting estimators of the nonzero parameters. Simulation studies have been presented to assess the finite-sample performance of the proposed procedure. 相似文献
136.
We summarize, review and comment upon three papers which discuss the use of discrete, noisy, incomplete, scattered pairwise dissimilarity data in statistical model building. Convex cone optimization codes are used to embed the objects into a Euclidean space which respects the dissimilarity information while controlling the dimension of the space. A “newbie” algorithm is provided for embedding new objects into this space. This allows the dissimilarity information to be incorporated into a smoothing spline ANOVA penalized likelihood model, a support vector machine, or any model that will admit reproducing kernel Hilbert space components, for nonparametric regression, supervised learning, or semisupervised learning. Future work and open questions are discussed. The papers are: 相似文献
137.
We studied properties of maximum likelihood estimators (MLEs) of the variance components obtained from balanced data of the one-way classification. Exact and asymptotic expected values and variances of these MLEs were derived under the usual normality assumptions. Numerical studies illustrate these expected values and variances, and also illustrate the probability of obtaining a negative solution to the maximum likelihood (ML) equation for the between-class variance component. Simulations were used to study the robustness of the ML estimators under non-normal distributions. 相似文献
138.
A method of estimation for generalised mixed models is applied to the estimation of regression parameters in a proportional hazards model with time dependent frailty. A parameter representing change over time is introduced and is modelled in turn into a fixed effect, a normally distributed random effect and a longitudinal effect in which the random component relates to the patient characteristics. Both maximum likelihood and residual maximum likelihood estimators are given. 相似文献
139.
Rolf Sundberg 《The American statistician》2018,72(2):155-157
Two dice are rolled repeatedly, only their sum is registered. Have the two dice been “shaved,” so two of the six sides appear more frequently? Pavlides and Perlman discussed this somewhat complicated type of situation through curved exponential families. Here, we contrast their approach by regarding data as incomplete data from a simple exponential family. The latter, supplementary approach is in some respects simpler, it provides additional insight about the relationships among the likelihood equation, the Fisher information, and the EM algorithm, and it illustrates the information content in ancillary statistics. 相似文献
140.
Based on the inverse probability weight method, we, in this article, construct the empirical likelihood (EL) and penalized empirical likelihood (PEL) ratios of the parameter in the linear quantile regression model when the covariates are missing at random, in the presence and absence of auxiliary information, respectively. It is proved that the EL ratio admits a limiting Chi-square distribution. At the same time, the asymptotic normality of the maximum EL and PEL estimators of the parameter is established. Also, the variable selection of the model in the presence and absence of auxiliary information, respectively, is discussed. Simulation study and a real data analysis are done to evaluate the performance of the proposed methods. 相似文献