首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
  示例: 沙坡头地区,人工植被区,变化  检索词用空格隔开表示必须包含全部检索词,用“,”隔开表示只需满足任一检索词即可!
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   141篇
  免费   1篇
丛书文集   1篇
综合类   4篇
统计学   137篇
  2021年   2篇
  2020年   1篇
  2019年   8篇
  2018年   7篇
  2017年   7篇
  2016年   5篇
  2014年   5篇
  2013年   40篇
  2012年   13篇
  2011年   4篇
  2010年   4篇
  2009年   11篇
  2008年   6篇
  2007年   5篇
  2006年   1篇
  2005年   3篇
  2004年   6篇
  2003年   4篇
  2002年   2篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1996年   1篇
  1985年   1篇
排序方式: 共有142条查询结果,搜索用时 0 毫秒
81.
    
ABSTRACT

In this paper, we propose modified spline estimators for nonparametric regression models with right-censored data, especially when the censored response observations are converted to synthetic data. Efficient implementation of these estimators depends on the set of knot points and an appropriate smoothing parameter. We use three algorithms, the default selection method (DSM), myopic algorithm (MA), and full search algorithm (FSA), to select the optimum set of knots in a penalized spline method based on a smoothing parameter, which is chosen based on different criteria, including the improved version of the Akaike information criterion (AICc), generalized cross validation (GCV), restricted maximum likelihood (REML), and Bayesian information criterion (BIC). We also consider the smoothing spline (SS), which uses all the data points as knots. The main goal of this study is to compare the performance of the algorithm and criteria combinations in the suggested penalized spline fits under censored data. A Monte Carlo simulation study is performed and a real data example is presented to illustrate the ideas in the paper. The results confirm that the FSA slightly outperforms the other methods, especially for high censoring levels.  相似文献   
82.
    
In this paper, we consider dynamic panel data models where the autoregressive parameter changes over time. We propose the GMM and ML estimators for this model. We conduct Monte Carlo simulation to compare the performance of these two estimators. The simulation results show that the ML estimator outperforms the GMM estimator.  相似文献   
83.
In this paper, we consider the estimation reliability in multicomponent stress-strength (MSS) model when both the stress and strengths are drawn from Topp-Leone (TL) distribution. The maximum likelihood (ML) and Bayesian methods are used in the estimation procedure. Bayesian estimates are obtained by using Lindley’s approximation and Gibbs sampling methods, since they cannot be obtained in explicit form in the context of TL. The asymptotic confidence intervals are constructed based on the ML estimators. The Bayesian credible intervals are also constructed using Gibbs sampling. The reliability estimates are compared via an extensive Monte-Carlo simulation study. Finally, a real data set is analysed for illustrative purposes.  相似文献   
84.
秦磊等 《统计研究》2018,35(6):109-116
针对具有多个来源的异质性数据,文献中通常提出复杂程度较高的模型用于描述每个数据子总体的特征,而本文着眼于刻画不同数据子总体的共性进而建立一个简单的模型。在参数估计方面,本文借鉴了普通线性模型的Maximin估计思想,提出了适用于广义线性模型的Maximin似然比估计方法及稀疏结构下的惩罚估计。该方法通过最大化所有子总体中似然比统计量的最小值,构建成一个简单而保守的模型,以减少数据来源较多而呈现的复杂性。所提方法适用于因变量服从正态分布、两点分布、泊松分布等指数族分布的情形,丰富了前人的研究成果,具有更好的实践意义。模拟分析显示,相比于经典的估计方法,Maximin似然比估计方法不仅能够有效地探寻子总体的共性,而且具有较高的样本外预测精度。本文提出的方法也适用于政府统计和经济统计中具有异质性的大型数据集。  相似文献   
85.
    
Bivariate probit models can deal with a problem usually known as endogeneity. This issue is likely to arise in observational studies when confounders are unobserved. We are concerned with testing the hypothesis of exogeneity (or absence of endogeneity) when using regression spline recursive and sample selection bivariate probit models. Likelihood ratio and gradient tests are discussed in this context and their empirical properties investigated and compared with those of the Lagrange multiplier and Wald tests through a Monte Carlo study. The tests are illustrated using two datasets in which the hypothesis of exogeneity needs to be tested.  相似文献   
86.
    
Storage reliability that measures the ability of products in a dormant state to keep their required functions is studied in this paper. Unlike the operational reliability, storage reliability for certain types of products may not be always 100% at the beginning of storage since there are existing possible initial failures that are normally neglected in the models of storage reliability. In this paper, a new combinatorial approach, the nonparametric measure for the estimates of the number of failed products and the current reliability at each testing time in storage, and the parametric measure for the estimates of the initial reliability and the failure rate based on the exponential reliability function, is proposed for estimating and predicting the storage reliability with possible initial failures. The proposed method has taken into consideration that the initial failure and the reliability testing data, before and during the storage process, are available for providing more accurate estimates of both initial failure probability and the probability of storage failures. When storage reliability prediction that is the main concern in this field should be made, the nonparametric estimates of failure numbers can be used into the parametric models for the failure process in storage. In the case of exponential models, the assessment and prediction method for storage reliability is provided in this paper. Finally, numerical examples are given to illustrate the method. Furthermore, a detailed comparison between the proposed method and the traditional method, for examining the rationality of assessment and prediction on the storage reliability, is presented. The results should be useful for planning a storage environment, decision-making concerning the maximum length of storage, and identifying the production quality.  相似文献   
87.
    
In trying to establish the relationship between a yearly fisheries recruitment series and meteorological or oceanographic variables such as air pressure or sea surface temperature, we are often faced with the situation where the number of regressors exceeds the number of observations. In this paper we use the techniques of penalized least squares and principal-components regression to determine whether air pressure over the North Atlantic can be used to predict two North Atlantic cod recruitment series. The results suggest that penalized least squares can be very effective in these situations.  相似文献   
88.
89.
We propose a robust regression method called regression with outlier shrinkage (ROS) for the traditional n>pn>p cases. It improves over the other robust regression methods such as least trimmed squares (LTS) in the sense that it can achieve maximum breakdown value and full asymptotic efficiency simultaneously. Moreover, its computational complexity is no more than that of LTS. We also propose a sparse estimator, called sparse regression with outlier shrinkage (SROS), for robust variable selection and estimation. It is proven that SROS can not only give consistent selection but also estimate the nonzero coefficients with full asymptotic efficiency under the normal model. In addition, we introduce a concept of nearly regression equivariant estimator for understanding the breakdown properties of sparse estimators, and prove that SROS achieves the maximum breakdown value of nearly regression equivariant estimators. Numerical examples are presented to illustrate our methods.  相似文献   
90.
Summary.  Traffic particle concentrations show considerable spatial variability within a metropolitan area. We consider latent variable semiparametric regression models for modelling the spatial and temporal variability of black carbon and elemental carbon concentrations in the greater Boston area. Measurements of these pollutants, which are markers of traffic particles, were obtained from several individual exposure studies that were conducted at specific household locations as well as 15 ambient monitoring sites in the area. The models allow for both flexible non-linear effects of covariates and for unexplained spatial and temporal variability in exposure. In addition, the different individual exposure studies recorded different surrogates of traffic particles, with some recording only outdoor concentrations of black or elemental carbon, some recording indoor concentrations of black carbon and others recording both indoor and outdoor concentrations of black carbon. A joint model for outdoor and indoor exposure that specifies a spatially varying latent variable provides greater spatial coverage in the area of interest. We propose a penalized spline formulation of the model that relates to generalized kriging of the latent traffic pollution variable and leads to a natural Bayesian Markov chain Monte Carlo algorithm for model fitting. We propose methods that allow us to control the degrees of freedom of the smoother in a Bayesian framework. Finally, we present results from an analysis that applies the model to data from summer and winter separately.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号