首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4196篇
  免费   78篇
  国内免费   8篇
管理学   138篇
人口学   13篇
丛书文集   20篇
理论方法论   29篇
综合类   354篇
社会学   18篇
统计学   3710篇
  2023年   18篇
  2022年   19篇
  2021年   33篇
  2020年   74篇
  2019年   137篇
  2018年   178篇
  2017年   277篇
  2016年   123篇
  2015年   107篇
  2014年   132篇
  2013年   1435篇
  2012年   360篇
  2011年   94篇
  2010年   111篇
  2009年   126篇
  2008年   103篇
  2007年   85篇
  2006年   72篇
  2005年   96篇
  2004年   73篇
  2003年   67篇
  2002年   60篇
  2001年   58篇
  2000年   53篇
  1999年   61篇
  1998年   70篇
  1997年   40篇
  1996年   27篇
  1995年   28篇
  1994年   17篇
  1993年   17篇
  1992年   15篇
  1991年   11篇
  1990年   17篇
  1989年   12篇
  1988年   11篇
  1987年   6篇
  1986年   3篇
  1985年   11篇
  1984年   9篇
  1983年   11篇
  1982年   5篇
  1981年   3篇
  1980年   5篇
  1979年   2篇
  1978年   2篇
  1977年   3篇
  1976年   1篇
  1975年   2篇
  1973年   1篇
排序方式: 共有4282条查询结果,搜索用时 5 毫秒
61.
A regression approach to principal component analysis is presented in this note. We provide an alternative interpretation of principal components that illustrates the relation between the extra sum of squares in regression analysis and the eigenvalues associated with the principal components.  相似文献   
62.
The geometric characterization of linear regression in terms of the ‘concentration ellipse’ by Galton [Galton, F., 1886, Family likeness in stature (with Appendix by Dickson, J.D.H.). Proceedings of the Royal Society of London, 40, 42–73.] and Pearson [Pearson, K., 1901, On lines and planes of closest fit to systems of points in space. Philosophical Magazine, 2, 559–572.] was extended to the case of unequal variances of the presumably uncorrelated errors in the experimental data [McCartin, B.J., 2003, A geometric characterization of linear regression. Statistics, 37(2), 101–117.]. In this paper, this geometric characterization is further extended to planar (and also linear) regression in three dimensions where a beautiful interpretation in terms of the concentration ellipsoid is developed.  相似文献   
63.
The spatially inhomogeneous smoothness of the non-parametric density or regression-function to be estimated by non-parametric methods is often modelled by Besov- and Triebel-type smoothness constraints. For such problems, Donoho and Johnstone [D.L. Donoho and I.M. Johnstone, Minimax estimation via wavelet shrinkage. Ann. Stat. 26 (1998), pp. 879–921.], Delyon and Juditsky [B. Delyon and A. Juditsky, On minimax wavelet estimators, Appl. Comput. Harmon. Anal. 3 (1996), pp. 215–228.] studied minimax rates of convergence for wavelet estimators with thresholding, while Lepski et al. [O.V. Lepski, E. Mammen, and V.G. Spokoiny, Optimal spatial adaptation to inhomogeneous smoothness: an approach based on kernel estimators with variable bandwidth selectors, Ann. Stat. 25 (1997), pp. 929–947.] proposed a variable bandwidth selection for kernel estimators that achieved optimal rates over Besov classes. However, a second challenge in many real applications of non-parametric curve estimation is that the function must be positive. Here, we show how to construct estimators under positivity constraints that satisfy these constraints and also achieve minimax rates over the appropriate smoothness class.  相似文献   
64.
65.
In this paper, we consider characterizations of geometric distribution based on some properties of progressively Type-II right-censored order statistics. Specifically, we establish characterizations through conditional expectation, identical distribution, and independence of functions of progressively Type-II right-censored order statistics. Moreover, extensions of these results to generalized order statistics are also sketched. These generalize the corresponding results known for the case of ordinary order statistics.  相似文献   
66.
In this paper, an exact sufficient condition for the dominance of the Stein-type shrinkage estimator over the usual unbiased estimator in a partial linear model is exhibited. Comparison result is then done under the balanced loss function. It is assumed that the vector of disturbances is typically distributed according to the law belonging to the sub-class of elliptically contoured models. It is also shown that the dominance condition is robust. Furthermore, a nonparametric estimation after estimation of the linear part is added for detecting the efficiency of the obtained results.  相似文献   
67.
We establish strong consistency of the least squares estimates in multiple regression models discarding the usual assumption of the errors having null mean value. Thus, we required them to be i.i.d. with absolute moment of order r, 0<r<2, and null mean value when r>1. Only moderately restrictive conditions are imposed on the model matrix. In our treatment, we use an extension of the Marcinkiewicz–Zygmund strong law to overcome the errors mean value not being defined. In this way, we get a unified treatment for the case of i.i.d. errors extending the results of some previous papers.  相似文献   
68.
The interval-censored survival data appear very frequently, where the event of interest is not observed exactly but it is only known to occur within some time interval. In this paper, we propose a location-scale regression model based on the log-generalized gamma distribution for modelling interval-censored data. We shall be concerned only with parametric forms. The proposed model for interval-censored data represents a parametric family of models that has, as special submodels, other regression models which are broadly used in lifetime data analysis. Assuming interval-censored data, we consider a frequentist analysis, a Jackknife estimator and a non-parametric bootstrap for the model parameters. We derive the appropriate matrices for assessing local influence on the parameter estimates under different perturbation schemes and present some techniques to perform global influence.  相似文献   
69.
In this paper, we study the robustness properties of several procedures for the joint estimation of shape and scale in a generalized Pareto model. The estimators that we primarily focus upon, most bias robust estimator (MBRE) and optimal MSE-robust estimator (OMSE), are one-step estimators distinguished as optimally robust in the shrinking neighbourhood setting; that is, they minimize the maximal bias, respectively, on such a specific neighbourhood, the maximal mean squared error (MSE). For their initialization, we propose a particular location–dispersion estimator, MedkMAD, which matches the population median and kMAD (an asymmetric variant of the median of absolute deviations) against the empirical counterparts. These optimally robust estimators are compared to the maximum-likelihood, skipped maximum-likelihood, Cramér–von-Mises minimum distance, method-of-medians, and Pickands estimators. To quantify their deviation from robust optimality, for each of these suboptimal estimators, we determine the finite-sample breakdown point and the influence function, as well as the statistical accuracy measured by asymptotic bias, variance, and MSE – all evaluated uniformly on shrinking neighbourhoods. These asymptotic findings are complemented by an extensive simulation study to assess the finite-sample behaviour of the considered procedures. The applicability of the procedures and their stability against outliers are illustrated for the Danish fire insurance data set from the package evir.  相似文献   
70.
In this paper, we consider the estimation of the stress–strength parameter R=P(Y<X) when X and Y are independent and both are modified Weibull distributions with the common two shape parameters but different scale parameters. The Markov Chain Monte Carlo sampling method is used for posterior inference of the reliability of the stress–strength model. The maximum-likelihood estimator of R and its asymptotic distribution are obtained. Based on the asymptotic distribution, the confidence interval of R can be obtained using the delta method. We also propose a bootstrap confidence interval of R. The Bayesian estimators with balanced loss function, using informative and non-informative priors, are derived. Different methods and the corresponding confidence intervals are compared using Monte Carlo simulations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号