首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   404篇
  免费   8篇
  国内免费   3篇
管理学   26篇
民族学   2篇
人口学   3篇
丛书文集   3篇
综合类   52篇
社会学   1篇
统计学   328篇
  2022年   1篇
  2021年   4篇
  2020年   8篇
  2019年   16篇
  2018年   29篇
  2017年   22篇
  2016年   22篇
  2015年   10篇
  2014年   17篇
  2013年   99篇
  2012年   27篇
  2011年   7篇
  2010年   9篇
  2009年   16篇
  2008年   16篇
  2007年   12篇
  2006年   9篇
  2005年   13篇
  2004年   12篇
  2003年   13篇
  2002年   12篇
  2001年   3篇
  2000年   9篇
  1999年   10篇
  1998年   3篇
  1997年   4篇
  1995年   3篇
  1993年   3篇
  1992年   1篇
  1990年   1篇
  1987年   2篇
  1986年   1篇
  1984年   1篇
排序方式: 共有415条查询结果,搜索用时 15 毫秒
11.
Understanding how wood develops has become an important problematic of plant sciences. However, studying wood formation requires the acquisition of count data difficult to interpret. Here, the annual wood formation dynamics of a conifer tree species were modeled using generalized linear and additive models (GLM and GAM); GAM for location, scale, and shape (GAMLSS); a discrete semiparametric kernel regression for count data. The performance of models is evaluated using bootstrap methods. GLM was useful to describe the wood formation general pattern but had a lack of fitting, while GAM, GAMLSS, and kernel regression had a higher sensibility to short-term variations.  相似文献   
12.
A supersaturated design (SSD) is a design whose run size is not enough for estimating all main effects. Such a design is commonly used in screening experiments to screen active effects based on the effect sparsity principle. Traditional approaches, such as the ordinary stepwise regression and the best subset variable selection, may not be appropriate in this situation. In this article, a new variable selection method is proposed based on the idea of staged dimensionality reduction. Simulations and several real data studies indicate that the newly proposed method is more effective than the existing data analysis methods.  相似文献   
13.
Many tree algorithms have been developed for regression problems. Although they are regarded as good algorithms, most of them suffer from loss of prediction accuracy when there are many irrelevant variables and the number of predictors exceeds the number of observations. We propose the multistep regression tree with adaptive variable selection to handle this problem. The variable selection step and the fitting step comprise the multistep method.

The multistep generalized unbiased interaction detection and estimation (GUIDE) with adaptive forward selection (fg) algorithm, as a variable selection tool, performs better than some of the well-known variable selection algorithms such as efficacy adaptive regression tube hunting (EARTH), FSR (false selection rate), LSCV (least squares cross-validation), and LASSO (least absolute shrinkage and selection operator) for the regression problem. The results based on simulation study show that fg outperforms other algorithms in terms of selection result and computation time. It generally selects the important variables correctly with relatively few irrelevant variables, which gives good prediction accuracy with less computation time.  相似文献   
14.
Oracle Inequalities for Convex Loss Functions with Nonlinear Targets   总被引:1,自引:1,他引:0  
This article considers penalized empirical loss minimization of convex loss functions with unknown target functions. Using the elastic net penalty, of which the Least Absolute Shrinkage and Selection Operator (Lasso) is a special case, we establish a finite sample oracle inequality which bounds the loss of our estimator from above with high probability. If the unknown target is linear, this inequality also provides an upper bound of the estimation error of the estimated parameter vector. Next, we use the non-asymptotic results to show that the excess loss of our estimator is asymptotically of the same order as that of the oracle. If the target is linear, we give sufficient conditions for consistency of the estimated parameter vector. We briefly discuss how a thresholded version of our estimator can be used to perform consistent variable selection. We give two examples of loss functions covered by our framework.  相似文献   
15.
This article considers in-sample prediction and out-of-sample forecasting in regressions with many exogenous predictors. We consider four dimension-reduction devices: principal components, ridge, Landweber Fridman, and partial least squares. We derive rates of convergence for two representative models: an ill-posed model and an approximate factor model. The theory is developed for a large cross-section and a large time-series. As all these methods depend on a tuning parameter to be selected, we also propose data-driven selection methods based on cross-validation and establish their optimality. Monte Carlo simulations and an empirical application to forecasting inflation and output growth in the U.S. show that data-reduction methods outperform conventional methods in several relevant settings, and might effectively guard against instabilities in predictors’ forecasting ability.  相似文献   
16.
We study the variable selection problem for a class of generalized linear models with endogenous covariates. Based on the instrumental variable adjustment technology and the smooth-threshold estimating equation (SEE) method, we propose an instrumental variable based variable selection procedure. The proposed variable selection method can attenuate the effect of endogeneity in covariates, and is easy for application in practice. Some theoretical results are also derived such as the consistency of the proposed variable selection procedure and the convergence rate of the resulting estimator. Further, some simulation studies and a real data analysis are conducted to evaluate the performance of the proposed method, and simulation results show that the proposed method is workable.  相似文献   
17.
在瞬时波动率的各种估计量中,非参数估计量因其能准确地度量瞬时波动率,一直是学者们的研究热点。然而,这类估计量在实际应用中都面临着最优窗宽的确定问题。由于最优窗宽中往往携带一些难以估计的未知参数,使得在实际应用过程中确定最优窗宽的具体数值存在困难。本文以瞬时波动率的核估计量为例,借鉴非参数回归分析中窗宽选择的思想,构建了一种能从数据中准确计算出最优窗宽具体值的算法。理论的分析和数值上的验证表明:文中所构建的算法具有良好的稳定性、适应性和收敛速度。算法的提出为瞬时波动率的后续应用研究铺平道路。  相似文献   
18.
The paper investigates various nonparametric models including regression, conditional distribution, conditional density and conditional hazard function, when the covariates are infinite dimensional. The main contribution is to prove uniform in bandwidth asymptotic results for kernel estimators of these functional operators. Then, the application issues, involving data-driven bandwidth selection, are discussed.  相似文献   
19.
Summary.  The family of inverse regression estimators that was recently proposed by Cook and Ni has proven effective in dimension reduction by transforming the high dimensional predictor vector to its low dimensional projections. We propose a general shrinkage estimation strategy for the entire inverse regression estimation family that is capable of simultaneous dimension reduction and variable selection. We demonstrate that the new estimators achieve consistency in variable selection without requiring any traditional model, meanwhile retaining the root n estimation consistency of the dimension reduction basis. We also show the effectiveness of the new estimators through both simulation and real data analysis.  相似文献   
20.
Summary.  We propose covariance-regularized regression, a family of methods for prediction in high dimensional settings that uses a shrunken estimate of the inverse covariance matrix of the features to achieve superior prediction. An estimate of the inverse covariance matrix is obtained by maximizing the log-likelihood of the data, under a multivariate normal model, subject to a penalty; it is then used to estimate coefficients for the regression of the response onto the features. We show that ridge regression, the lasso and the elastic net are special cases of covariance-regularized regression, and we demonstrate that certain previously unexplored forms of covariance-regularized regression can outperform existing methods in a range of situations. The covariance-regularized regression framework is extended to generalized linear models and linear discriminant analysis, and is used to analyse gene expression data sets with multiple class and survival outcomes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号