全文获取类型
收费全文 | 1324篇 |
免费 | 49篇 |
国内免费 | 3篇 |
专业分类
管理学 | 97篇 |
民族学 | 2篇 |
人口学 | 7篇 |
丛书文集 | 20篇 |
理论方法论 | 20篇 |
综合类 | 282篇 |
社会学 | 30篇 |
统计学 | 918篇 |
出版年
2024年 | 6篇 |
2023年 | 12篇 |
2022年 | 13篇 |
2021年 | 14篇 |
2020年 | 37篇 |
2019年 | 40篇 |
2018年 | 37篇 |
2017年 | 59篇 |
2016年 | 40篇 |
2015年 | 37篇 |
2014年 | 50篇 |
2013年 | 263篇 |
2012年 | 100篇 |
2011年 | 46篇 |
2010年 | 45篇 |
2009年 | 43篇 |
2008年 | 38篇 |
2007年 | 41篇 |
2006年 | 42篇 |
2005年 | 52篇 |
2004年 | 34篇 |
2003年 | 45篇 |
2002年 | 15篇 |
2001年 | 42篇 |
2000年 | 31篇 |
1999年 | 30篇 |
1998年 | 22篇 |
1997年 | 27篇 |
1996年 | 18篇 |
1995年 | 17篇 |
1994年 | 13篇 |
1993年 | 13篇 |
1992年 | 11篇 |
1991年 | 1篇 |
1990年 | 5篇 |
1989年 | 9篇 |
1988年 | 7篇 |
1987年 | 6篇 |
1986年 | 2篇 |
1984年 | 4篇 |
1983年 | 2篇 |
1982年 | 2篇 |
1981年 | 1篇 |
1979年 | 1篇 |
1978年 | 1篇 |
1976年 | 1篇 |
1975年 | 1篇 |
排序方式: 共有1376条查询结果,搜索用时 15 毫秒
61.
Jonathan El Methni Laurent Gardes Stéphane Girard 《Scandinavian Journal of Statistics》2014,41(4):988-1012
In this paper, we introduce a new risk measure, the so‐called conditional tail moment. It is defined as the moment of order a ≥ 0 of the loss distribution above the upper α‐quantile where α ∈ (0,1). Estimating the conditional tail moment permits us to estimate all risk measures based on conditional moments such as conditional tail expectation, conditional value at risk or conditional tail variance. Here, we focus on the estimation of these risk measures in case of extreme losses (where α ↓0 is no longer fixed). It is moreover assumed that the loss distribution is heavy tailed and depends on a covariate. The estimation method thus combines non‐parametric kernel methods with extreme‐value statistics. The asymptotic distribution of the estimators is established, and their finite‐sample behaviour is illustrated both on simulated data and on a real data set of daily rainfalls. 相似文献
62.
63.
64.
John M. Neuhaus Charles E. McCulloch 《Australian & New Zealand Journal of Statistics》2014,56(4):331-345
Investigators often gather longitudinal data to assess changes in responses over time within subjects and to relate these changes to within‐subject changes in predictors. Missing data are common in such studies and predictors can be correlated with subject‐specific effects. Maximum likelihood methods for generalized linear mixed models provide consistent estimates when the data are ‘missing at random’ (MAR) but can produce inconsistent estimates in settings where the random effects are correlated with one of the predictors. On the other hand, conditional maximum likelihood methods (and closely related maximum likelihood methods that partition covariates into between‐ and within‐cluster components) provide consistent estimation when random effects are correlated with predictors but can produce inconsistent covariate effect estimates when data are MAR. Using theory, simulation studies, and fits to example data this paper shows that decomposition methods using complete covariate information produce consistent estimates. In some practical cases these methods, that ostensibly require complete covariate information, actually only involve the observed covariates. These results offer an easy‐to‐use approach to simultaneously protect against bias from both cluster‐level confounding and MAR missingness in assessments of change. 相似文献
65.
Hideki Nagatsuka N. Balakrishnan 《Journal of Statistical Computation and Simulation》2013,83(10):1915-1931
In this paper, we propose a consistent method of estimation for the parameters of the three-parameter inverse Gaussian distribution. We then discuss some properties of these estimators and show by means of a Monte Carlo simulation study that the proposed estimators perform better than some other prominent estimators in terms of bias and root mean squared error. Finally, we present two real-life examples to illustrate the method of inference developed here. 相似文献
66.
67.
Ghazi Shukur 《统计学通讯:模拟与计算》2013,42(2):419-448
Using Monte Carlo methods, the properties of systemwise generalisations of the Breusch-Godfrey test for autocorrelated errors are studied in situations when the error terms follow either normal or non-normal distributions, and when these errors follow either AR(1) or MA(1) processes. Edgerton and Shukur (1999) studied the properties of the test using normally distributed error terms and when these errors follow an AR(1) process. When the errors follow a non-normal distribution, the performances of the tests deteriorate especially when the tails are very heavy. The performances of the tests become better (as in the case when the errors are generated by the normal distribution) when the errors are less heavy tailed. 相似文献
68.
ABSTRACTA common Bayesian hierarchical model is where high-dimensional observed data depend on high-dimensional latent variables that, in turn, depend on relatively few hyperparameters. When the full conditional distribution over latent variables has a known form, general MCMC sampling need only be performed on the low-dimensional marginal posterior distribution over hyperparameters. This improves on popular Gibbs sampling that computes over the full space. Sampling the marginal posterior over hyperparameters exhibits good scaling of compute cost with data size, particularly when that distribution depends on a low-dimensional sufficient statistic. 相似文献
69.
ABSTRACTConditional tests are constructed by conditioning a fit measure to a minimal sufficient statistic. To calculate the p-value of these tests, Monte Carlo methods with co-sufficient samples can be used. In this paper we show how to simulate co-sufficient samples when the data distribution belongs to the exponential family with doubly transitive sufficient statistics. The proposed method is illustrated using the beta distribution. 相似文献
70.
J. M. Fernández-Ponce F. Palacios-Rodríguez M. R. Rodríguez-Griñolo 《Journal of applied statistics》2013,40(1):28-39
Linear models constitute the primary statistical technique for any experimental science. A major topic in this area is the detection of influential subsets of data, that is, of observations that are influential in terms of their effect on the estimation of parameters in linear regression or of the total population parameters. Numerous studies exist on radiocarbon dating which propose a value consensus and remove possible outliers after the corresponding testing. An influence analysis for the value consensus from a Bayesian perspective is developed in this article. 相似文献