首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1026篇
  免费   31篇
  国内免费   8篇
管理学   72篇
人口学   9篇
丛书文集   23篇
理论方法论   13篇
综合类   267篇
社会学   12篇
统计学   669篇
  2023年   8篇
  2022年   19篇
  2021年   10篇
  2020年   33篇
  2019年   47篇
  2018年   54篇
  2017年   64篇
  2016年   40篇
  2015年   33篇
  2014年   56篇
  2013年   177篇
  2012年   90篇
  2011年   40篇
  2010年   29篇
  2009年   34篇
  2008年   31篇
  2007年   41篇
  2006年   29篇
  2005年   26篇
  2004年   32篇
  2003年   24篇
  2002年   24篇
  2001年   21篇
  2000年   15篇
  1999年   18篇
  1998年   15篇
  1997年   11篇
  1996年   8篇
  1995年   8篇
  1994年   3篇
  1993年   5篇
  1992年   6篇
  1991年   4篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1986年   1篇
  1985年   2篇
  1978年   1篇
  1977年   1篇
排序方式: 共有1065条查询结果,搜索用时 15 毫秒
41.
This paper proposes the use of the Bernstein–Dirichlet process prior for a new nonparametric approach to estimating the link function in the single-index model (SIM). The Bernstein–Dirichlet process prior has so far mainly been used for nonparametric density estimation. Here we modify this approach to allow for an approximation of the unknown link function. Instead of the usual Gaussian distribution, the error term is assumed to be asymmetric Laplace distributed which increases the flexibility and robustness of the SIM. To automatically identify truly active predictors, spike-and-slab priors are used for Bayesian variable selection. Posterior computations are performed via a Metropolis-Hastings-within-Gibbs sampler using a truncation-based algorithm for stick-breaking priors. We compare the efficiency of the proposed approach with well-established techniques in an extensive simulation study and illustrate its practical performance by an application to nonparametric modelling of the power consumption in a sewage treatment plant.  相似文献   
42.
In many practical applications, high-dimensional regression analyses have to take into account measurement error in the covariates. It is thus necessary to extend regularization methods, that can handle the situation where the number of covariates p largely exceed the sample size n, to the case in which covariates are also mismeasured. A variety of methods are available in this context, but many of them rely on knowledge about the measurement error and the structure of its covariance matrix. In this paper, we set the goal to compare some of these methods, focusing on situations relevant for practical applications. In particular, we will evaluate these methods in setups in which the measurement error distribution and dependence structure are not known and have to be estimated from data. Our focus is on variable selection, and the evaluation is based on extensive simulations.  相似文献   
43.
44.
Non-Gaussian spatial responses are usually modeled using spatial generalized linear mixed model with spatial random effects. The likelihood function of this model cannot usually be given in a closed form, thus the maximum likelihood approach is very challenging. There are numerical ways to maximize the likelihood function, such as Monte Carlo Expectation Maximization and Quadrature Pairwise Expectation Maximization algorithms. They can be applied but may in such cases be computationally very slow or even prohibitive. Gauss–Hermite quadrature approximation only suitable for low-dimensional latent variables and its accuracy depends on the number of quadrature points. Here, we propose a new approximate pairwise maximum likelihood method to the inference of the spatial generalized linear mixed model. This approximate method is fast and deterministic, using no sampling-based strategies. The performance of the proposed method is illustrated through two simulation examples and practical aspects are investigated through a case study on a rainfall data set.  相似文献   
45.
We study the variable selection problem for a class of generalized linear models with endogenous covariates. Based on the instrumental variable adjustment technology and the smooth-threshold estimating equation (SEE) method, we propose an instrumental variable based variable selection procedure. The proposed variable selection method can attenuate the effect of endogeneity in covariates, and is easy for application in practice. Some theoretical results are also derived such as the consistency of the proposed variable selection procedure and the convergence rate of the resulting estimator. Further, some simulation studies and a real data analysis are conducted to evaluate the performance of the proposed method, and simulation results show that the proposed method is workable.  相似文献   
46.
We present APproximated Exhaustive Search (APES), which enables fast and approximated exhaustive variable selection in Generalised Linear Models (GLMs). While exhaustive variable selection remains as the gold standard in many model selection contexts, traditional exhaustive variable selection suffers from computational feasibility issues. More precisely, there is often a high cost associated with computing maximum likelihood estimates (MLE) for all subsets of GLMs. Efficient algorithms for exhaustive searches exist for linear models, most notably the leaps‐and‐bound algorithm and, more recently, the mixed integer optimisation (MIO) algorithm. The APES method learns from observational weights in a generalised linear regression super‐model and reformulates the GLM problem as a linear regression problem. In this way, APES can approximate a true exhaustive search in the original GLM space. Where exhaustive variable selection is not computationally feasible, we propose a best‐subset search, which also closely approximates a true exhaustive search. APES is made available in both as a standalone R package as well as part of the already existing mplot package.  相似文献   
47.
To perform variable selection in expectile regression, we introduce the elastic-net penalty into expectile regression and propose an elastic-net penalized expectile regression (ER-EN) model. We then adopt the semismooth Newton coordinate descent (SNCD) algorithm to solve the proposed ER-EN model in high-dimensional settings. The advantages of ER-EN model are illustrated via extensive Monte Carlo simulations. The numerical results show that the ER-EN model outperforms the elastic-net penalized least squares regression (LSR-EN), the elastic-net penalized Huber regression (HR-EN), the elastic-net penalized quantile regression (QR-EN) and conventional expectile regression (ER) in terms of variable selection and predictive ability, especially for asymmetric distributions. We also apply the ER-EN model to two real-world applications: relative location of CT slices on the axial axis and metabolism of tacrolimus (Tac) drug. Empirical results also demonstrate the superiority of the ER-EN model.  相似文献   
48.
This paper studies the outlier detection and robust variable selection problem in the linear regression model. The penalized weighted least absolute deviation (PWLAD) regression estimation method and the adaptive least absolute shrinkage and selection operator (LASSO) are combined to simultaneously achieve outlier detection, and robust variable selection. An iterative algorithm is proposed to solve the proposed optimization problem. Monte Carlo studies are evaluated the finite-sample performance of the proposed methods. The results indicate that the finite sample performance of the proposed methods performs better than that of the existing methods when there are leverage points or outliers in the response variable or explanatory variables. Finally, we apply the proposed methodology to analyze two real datasets.  相似文献   
49.
Traditional bioavailability studies assess average bioequivalence (ABE) between the test (T) and reference (R) products under the crossover design with TR and RT sequences. With highly variable (HV) drugs whose intrasubject coefficient of variation in pharmacokinetic measures is 30% or greater, assertion of ABE becomes difficult due to the large sample sizes needed to achieve adequate power. In 2011, the FDA adopted a more relaxed, yet complex, ABE criterion and supplied a procedure to assess this criterion exclusively under TRR‐RTR‐RRT and TRTR‐RTRT designs. However, designs with more than 2 periods are not always feasible. This present work investigates how to evaluate HV drugs under TR‐RT designs. A mixed model with heterogeneous residual variances is used to fit data from TR‐RT designs. Under the assumption of zero subject‐by‐formulation interaction, this basic model is comparable to the FDA‐recommended model for TRR‐RTR‐RRT and TRTR‐RTRT designs, suggesting the conceptual plausibility of our approach. To overcome the distributional dependency among summary statistics of model parameters, we develop statistical tests via the generalized pivotal quantity (GPQ). A real‐world data example is given to illustrate the utility of the resulting procedures. Our simulation study identifies a GPQ‐based testing procedure that evaluates HV drugs under practical TR‐RT designs with desirable type I error rate and reasonable power. In comparison to the FDA's approach, this GPQ‐based procedure gives similar performance when the product's intersubject standard deviation is low (≤0.4) and is most useful when practical considerations restrict the crossover design to 2 periods.  相似文献   
50.
In many diagnostic studies, multiple diagnostic tests are performed on each subject or multiple disease markers are available. Commonly, the information should be combined to improve the diagnostic accuracy. We consider the problem of comparing the discriminatory abilities between two groups of biomarkers. Specifically, this article focuses on confidence interval estimation of the difference between paired AUCs based on optimally combined markers under the assumption of multivariate normality. Simulation studies demonstrate that the proposed generalized variable approach provides confidence intervals with satisfying coverage probabilities at finite sample sizes. The proposed method can also easily provide P-values for hypothesis testing. Application to analysis of a subset of data from a study on coronary heart disease illustrates the utility of the method in practice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号