首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8614篇
  免费   178篇
  国内免费   99篇
管理学   316篇
民族学   40篇
人才学   5篇
人口学   76篇
丛书文集   751篇
理论方法论   193篇
综合类   5061篇
社会学   177篇
统计学   2272篇
  2024年   5篇
  2023年   34篇
  2022年   49篇
  2021年   63篇
  2020年   105篇
  2019年   143篇
  2018年   130篇
  2017年   242篇
  2016年   199篇
  2015年   228篇
  2014年   448篇
  2013年   1077篇
  2012年   669篇
  2011年   646篇
  2010年   503篇
  2009年   460篇
  2008年   454篇
  2007年   502篇
  2006年   507篇
  2005年   444篇
  2004年   375篇
  2003年   378篇
  2002年   297篇
  2001年   245篇
  2000年   143篇
  1999年   84篇
  1998年   62篇
  1997年   64篇
  1996年   57篇
  1995年   40篇
  1994年   37篇
  1993年   26篇
  1992年   27篇
  1991年   21篇
  1990年   16篇
  1989年   19篇
  1988年   11篇
  1987年   11篇
  1986年   5篇
  1985年   13篇
  1984年   14篇
  1983年   11篇
  1982年   2篇
  1981年   6篇
  1980年   3篇
  1979年   10篇
  1978年   2篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
排序方式: 共有8891条查询结果,搜索用时 15 毫秒
41.
42.
We show that smoothing spline, intrinsic autoregression (IAR) and state-space model can be formulated as partially specified random-effect model with singular precision (SP). Various fitting methods have been suggested for the aforementioned models and this paper investigates the relationships among them, once the models have been placed under a single framework. Some methods have been previously shown to give the best linear unbiased predictors (BLUPs) under some random-effect models and here we show that they are in fact uniformly BLUPs (UBLUPs) under a class of models that are generated by the SP of random effects. We offer some new interpretations of the UBLUPs under models of SP and define BLUE and BLUP in these partially specified models without having to specify the covariance. We also show how the full likelihood inferences for random-effect models can be made for these models, so that the maximum likelihood (ML) and restricted maximum likelihood (REML) estimators can be used for the smoothing parameters in splines, etc.  相似文献   
43.
A pivotal characteristic of credit defaults that is ignored by most credit scoring models is the rarity of the event. The most widely used model to estimate the probability of default is the logistic regression model. Since the dependent variable represents a rare event, the logistic regression model shows relevant drawbacks, for example, underestimation of the default probability, which could be very risky for banks. In order to overcome these drawbacks, we propose the generalized extreme value regression model. In particular, in a generalized linear model (GLM) with the binary-dependent variable we suggest the quantile function of the GEV distribution as link function, so our attention is focused on the tail of the response curve for values close to one. The estimation procedure used is the maximum-likelihood method. This model accommodates skewness and it presents a generalisation of GLMs with complementary log–log link function. We analyse its performance by simulation studies. Finally, we apply the proposed model to empirical data on Italian small and medium enterprises.  相似文献   
44.
The problem of multivariate regression modelling in the presence of heterogeneous data is dealt to address the relevant issue of the influence of such heterogeneity in assessing the linear relations between responses and explanatory variables. In spite of its popularity, clusterwise regression is not designed to identify the linear relationships within ‘homogeneous’ clusters exhibiting internal cohesion and external separation. A within-clusterwise regression is introduced to achieve this aim and, since the possible presence of a linear relation ‘between’ clusters should be also taken into account, a general regression model is introduced to account for both the between-cluster and the within-cluster regression variation. Some decompositions of the variance of the responses accounted for are also given, the least-squares estimation of the parameters is derived, together with an appropriate coordinate descent algorithms and the performance of the proposed methodology is evaluated in different datasets.  相似文献   
45.
This paper is an applied analysis of the causal structure of linear multi-equational econometric models. Its aim is to identify the kind of relationships linking the endogenous variables of the model, distinguishing between causal links and feedback loops. The investigation is first carried out within a deterministic framework and then moves on to show how the results may change inside a more realistic stochastic context. The causal analysis is then specifically applied to a linear simultaneous equation model explaining fertility rates. The analysis is carried out by means of a specific RATS programming code designed to show the specific nature of the relationships within the model.  相似文献   
46.
Spectral clustering uses eigenvectors of the Laplacian of the similarity matrix. It is convenient to solve binary clustering problems. When applied to multi-way clustering, either the binary spectral clustering is recursively applied or an embedding to spectral space is done and some other methods, such as K-means clustering, are used to cluster the points. Here we propose and study a K-way clustering algorithm – spectral modular transformation, based on the fact that the graph Laplacian has an equivalent representation, which has a diagonal modular structure. The method first transforms the original similarity matrix into a new one, which is nearly disconnected and reveals a cluster structure clearly, then we apply linearized cluster assignment algorithm to split the clusters. In this way, we can find some samples for each cluster recursively using the divide and conquer method. To get the overall clustering results, we apply the cluster assignment obtained in the previous step as the initialization of multiplicative update method for spectral clustering. Examples show that our method outperforms spectral clustering using other initializations.  相似文献   
47.
48.
A fast and accurate method of confidence interval construction for the smoothing parameter in penalised spline and partially linear models is proposed. The method is akin to a parametric percentile bootstrap where Monte Carlo simulation is replaced by saddlepoint approximation, and can therefore be viewed as an approximate bootstrap. It is applicable in a quite general setting, requiring only that the underlying estimator be the root of an estimating equation that is a quadratic form in normal random variables. This is the case under a variety of optimality criteria such as those commonly denoted by maximum likelihood (ML), restricted ML (REML), generalized cross validation (GCV) and Akaike's information criteria (AIC). Simulation studies reveal that under the ML and REML criteria, the method delivers a near‐exact performance with computational speeds that are an order of magnitude faster than existing exact methods, and two orders of magnitude faster than a classical bootstrap. Perhaps most importantly, the proposed method also offers a computationally feasible alternative when no known exact or asymptotic methods exist, e.g. GCV and AIC. An application is illustrated by applying the methodology to well‐known fossil data. Giving a range of plausible smoothed values in this instance can help answer questions about the statistical significance of apparent features in the data.  相似文献   
49.
Traffic flow data are routinely collected for many networks worldwide. These invariably large data sets can be used as part of a traffic management system, for which good traffic flow forecasting models are crucial. The linear multiregression dynamic model (LMDM) has been shown to be promising for forecasting flows, accommodating multivariate flow time series, while being a computationally simple model to use. While statistical flow forecasting models usually base their forecasts on flow data alone, data for other traffic variables are also routinely collected. This paper shows how cubic splines can be used to incorporate extra variables into the LMDM in order to enhance flow forecasts. Cubic splines are also introduced into the LMDM to parsimoniously accommodate the daily cycle exhibited by traffic flows. The proposed methodology allows the LMDM to provide more accurate forecasts when forecasting flows in a real high‐dimensional traffic data set. The resulting extended LMDM can deal with some important traffic modelling issues not usually considered in flow forecasting models. Additionally, the model can be implemented in a real‐time environment, a crucial requirement for traffic management systems designed to support decisions and actions to alleviate congestion and keep traffic flowing.  相似文献   
50.
Abstract. This article presents a framework for comparing bivariate distributions according to their degree of regression dependence. We introduce the general concept of a regression dependence order (RDO). In addition, we define a new non‐parametric measure of regression dependence and study its properties. Besides being monotone in the new RDOs, the measure takes on its extreme values precisely at independence and almost sure functional dependence, respectively. A consistent non‐parametric estimator of the new measure is constructed and its asymptotic properties are investigated. Finally, the finite sample properties of the estimate are studied by means of a small simulation study.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号