首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   842篇
  免费   55篇
  国内免费   2篇
管理学   39篇
民族学   4篇
人口学   38篇
丛书文集   12篇
理论方法论   106篇
综合类   60篇
社会学   213篇
统计学   427篇
  2023年   14篇
  2022年   12篇
  2021年   16篇
  2020年   30篇
  2019年   43篇
  2018年   50篇
  2017年   61篇
  2016年   44篇
  2015年   41篇
  2014年   37篇
  2013年   185篇
  2012年   54篇
  2011年   38篇
  2010年   27篇
  2009年   39篇
  2008年   26篇
  2007年   21篇
  2006年   27篇
  2005年   18篇
  2004年   26篇
  2003年   16篇
  2002年   13篇
  2001年   21篇
  2000年   8篇
  1999年   8篇
  1998年   8篇
  1997年   5篇
  1996年   2篇
  1995年   2篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1987年   1篇
排序方式: 共有899条查询结果,搜索用时 31 毫秒
11.
In a missing data setting, we have a sample in which a vector of explanatory variables ${\bf x}_i$ is observed for every subject i, while scalar responses $y_i$ are missing by happenstance on some individuals. In this work we propose robust estimators of the distribution of the responses assuming missing at random (MAR) data, under a semiparametric regression model. Our approach allows the consistent estimation of any weakly continuous functional of the response's distribution. In particular, strongly consistent estimators of any continuous location functional, such as the median, L‐functionals and M‐functionals, are proposed. A robust fit for the regression model combined with the robust properties of the location functional gives rise to a robust recipe for estimating the location parameter. Robustness is quantified through the breakdown point of the proposed procedure. The asymptotic distribution of the location estimators is also derived. The proofs of the theorems are presented in Supplementary Material available online. The Canadian Journal of Statistics 41: 111–132; 2013 © 2012 Statistical Society of Canada  相似文献   
12.
The objective of this research was to demonstrate a framework for drawing inference from sensitivity analyses of incomplete longitudinal clinical trial data via a re‐analysis of data from a confirmatory clinical trial in depression. A likelihood‐based approach that assumed missing at random (MAR) was the primary analysis. Robustness to departure from MAR was assessed by comparing the primary result to those from a series of analyses that employed varying missing not at random (MNAR) assumptions (selection models, pattern mixture models and shared parameter models) and to MAR methods that used inclusive models. The key sensitivity analysis used multiple imputation assuming that after dropout the trajectory of drug‐treated patients was that of placebo treated patients with a similar outcome history (placebo multiple imputation). This result was used as the worst reasonable case to define the lower limit of plausible values for the treatment contrast. The endpoint contrast from the primary analysis was ? 2.79 (p = .013). In placebo multiple imputation, the result was ? 2.17. Results from the other sensitivity analyses ranged from ? 2.21 to ? 3.87 and were symmetrically distributed around the primary result. Hence, no clear evidence of bias from missing not at random data was found. In the worst reasonable case scenario, the treatment effect was 80% of the magnitude of the primary result. Therefore, it was concluded that a treatment effect existed. The structured sensitivity framework of using a worst reasonable case result based on a controlled imputation approach with transparent and debatable assumptions supplemented a series of plausible alternative models under varying assumptions was useful in this specific situation and holds promise as a generally useful framework. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
13.
The exclusion restriction is usually assumed for identifying causal effects in true or only natural randomized experiments with noncompliance. It requires that the assignment to treatment does not have a direct causal effect on the outcome. Despite its importance, the restriction can often be unrealistic, especially in situations of natural experiments. It is shown that, without the exclusion restriction, the parametric model is identified if the outcome distributions of various compliance statuses are in the same parametric class and that class is a linearly independent set over the field of real numbers. However, the relaxation of the exclusion restriction yields a parametric model that is characterized by the presence of mixtures of distributions. This scenario complicates the likelihood‐based estimation procedures because it implies more than one maximum likelihood point. A two‐step estimation procedure based on detecting the root that is closest to the method of moments estimate of the parameter vector is then proposed and analyzed in detail, under normally distributed outcomes. An economic example with real data concerning returns to schooling concludes the paper.  相似文献   
14.
In a missing-data setting, we want to estimate the mean of a scalar outcome, based on a sample in which an explanatory variable is observed for every subject while responses are missing by happenstance for some of them. We consider two kinds of estimates of the mean response when the explanatory variable is functional. One is based on the average of the predicted values and the second one is a functional adaptation of the Horvitz–Thompson estimator. We show that the infinite dimensionality of the problem does not affect the rates of convergence by stating that the estimates are root-n consistent, under missing at random (MAR) assumption. These asymptotic features are completed by simulated experiments illustrating the easiness of implementation and the good behaviour on finite sample sizes of the method. This is the first paper emphasizing that the insensitiveness of averaged estimates, well known in multivariate non-parametric statistics, remains true for an infinite-dimensional covariable. In this sense, this work opens the way for various other results of this kind in functional data analysis.  相似文献   
15.
Testing the equal means hypothesis of a bivariate normal distribution with homoscedastic varlates when the data are incomplete is considered. If the correlational parameter, ρ, is known, the well-known theory of the general linear model is easily employed to construct the likelihood ratio test for the two sided alternative. A statistic, T, for the case of ρ unknown is proposed by direct analogy to the likelihood ratio statistic when ρ is known. The null and nonnull distribution of T is investigated by Monte Carlo techniques. It is concluded that T may be compared to the conventional t distribution for testing the null hypothesis and that this procedure results in a substantial increase in power-efficiency over the procedure based on the paired t test which ignores the incomplete data. A Monte Carlo comparison to two statistics proposed by Lin and Stivers (1974) suggests that the test based on T is more conservative than either of their statistics.  相似文献   
16.
Researchers have proposed that hospitals with excessive statistically unexplained mortality rates are more likely to have quality-of-care problems. The U.S. Health Care Financing Administration currently uses this statistical “outlier” approach to screen for poor quality in hospitals. Little is known, however, about the validity of this technique, since direct measures of quality are difficult to obtain. We use Monte Carlo methods to evaluate the performance of the outlier technique as parameters of the true mortality process are varied. Results indicate that the screening ability of the technique may be very sensitive to how widespread quality-related mortality is among hospitals but insensitive to other factors generally thought to be important.  相似文献   
17.
Abstract

We suggest shrinkage based technique for estimating covariance matrix in the high-dimensional normal model with missing data. Our approach is based on the monotone missing scheme assumption, meaning that missing values patterns occur completely at random. Our asymptotic framework allows the dimensionality p grow to infinity together with the sample size, N, and extends the methodology of Ledoit and Wolf (2004) Ledoit, O., Wolf, M. (2004). A well-conditioned estimator for large dimensional covariance matrices. J. Multivariate Anal. 88:365411.[Crossref], [Web of Science ®] [Google Scholar] to the case of two-step monotone missing data. Two new shrinkage-type estimators are derived and their dominance properties over the Ledoit and Wolf (2004) Ledoit, O., Wolf, M. (2004). A well-conditioned estimator for large dimensional covariance matrices. J. Multivariate Anal. 88:365411.[Crossref], [Web of Science ®] [Google Scholar] estimator are shown under the expected quadratic loss. We perform a simulation study and conclude that the proposed estimators are successful for a range of missing data scenarios.  相似文献   
18.
An imputation procedure is a procedure by which each missing value in a data set is replaced (imputed) by an observed value using a predetermined resampling procedure. The distribution of a statistic computed from a data set consisting of observed and imputed values, called a completed data set, is affecwd by the imputation procedure used. In a Monte Carlo experiment, three imputation procedures are compared with respect to the empirical behavior of the goodness-of- fit chi-square statistic computed from a completed data set. The results show that each imputation procedure affects the distribution of the goodness-of-fit chi-square statistic in 3. different manner. However, when the empirical behavior of the goodness-of-fit chi-square statistic is compared u, its appropriate asymptotic distribution, there are no substantial differences between these imputation procedures.  相似文献   
19.
In some crossover experiments, particularly in medical applications, subjects may fail to complete their sequences of treatments for reasons unconnected with the treatments received. A method is described of assessing the robustness of a planned crossover design, with more than two periods, to subjects leaving the study prematurely. The method involves computing measures of efficiency for every possible design that can result, and is therefore very computationally intensive. Summaries of these measures are used to choose between competing designs. The computational problem is reduced to a manageable size by a software implementation of Polya theory. The method is applied to comparing designs for crossover studies involving four treatments and four periods. Designs are identified that are more robust to subjects dropping out in the final period than those currently favoured in medical and clinical trials.  相似文献   
20.
For frequency counts, the situation of extra zeros often arises in biomedical applications. This is demonstrated with count data from a dental epidemiological study in Belo Horizonte (the Belo Horizonte caries prevention study) which evaluated various programmes for reducing caries. Extra zeros, however, violate the variance–mean relationship of the Poisson error structure. This extra-Poisson variation can easily be explained by a special mixture model, the zero-inflated Poisson (ZIP) model. On the basis of the ZIP model, a graphical device is presented which not only summarizes the mixing distribution but also provides visual information about the overall mean. This device can be exploited to evaluate and compare various groups. Ways are discussed to include covariates and to develop an extension of the conventional Poisson regression. Finally, a method to evaluate intervention effects on the basis of the ZIP regression model is described and applied to the data of the Belo Horizonte caries prevention study.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号