首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1699篇
  免费   47篇
  国内免费   9篇
管理学   34篇
民族学   5篇
人口学   11篇
丛书文集   107篇
理论方法论   33篇
综合类   586篇
社会学   11篇
统计学   968篇
  2024年   3篇
  2023年   6篇
  2022年   11篇
  2021年   11篇
  2020年   17篇
  2019年   37篇
  2018年   41篇
  2017年   72篇
  2016年   51篇
  2015年   42篇
  2014年   48篇
  2013年   458篇
  2012年   137篇
  2011年   64篇
  2010年   47篇
  2009年   65篇
  2008年   60篇
  2007年   67篇
  2006年   50篇
  2005年   70篇
  2004年   51篇
  2003年   44篇
  2002年   44篇
  2001年   44篇
  2000年   48篇
  1999年   21篇
  1998年   17篇
  1997年   12篇
  1996年   18篇
  1995年   15篇
  1994年   11篇
  1993年   9篇
  1992年   13篇
  1991年   7篇
  1990年   12篇
  1989年   6篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   5篇
  1984年   2篇
  1983年   2篇
  1982年   5篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1975年   3篇
排序方式: 共有1755条查询结果,搜索用时 15 毫秒
51.
For the linear-exponential distribution with increasing hazard rate, exact and explicit expressions for means, product moments and percentage points of order statistics are obtained. Some recurrence relations for both single and product moments of order statistics are also derived. These recurrence relations would enable one to obtain all the higher order moments of order statistics for all sample sizes from those of the lower order  相似文献   
52.
It is proved that the accuracy of the bootstrap approximation of the joint distribution of sample quantiles lies between O(n?1/4) and O(n?1/4 an), where (log(n))1/2=O(an). As an application, we investigated confidence intervals based on the bootstrap.  相似文献   
53.
The notion of cross-product ratio for discrete two-way contingency table is extended to the case of continuous bivariate densities. This results in the “local dependence function” that measues the margin-free dependence between bivariate random variables. Properties and examples of the dependence function are discussed. The bivariate normal density plays a special role since it has constant dependence. Continuous bivariate densities can be constructed by specifying the dependence function along with two marginals in analogy to the construction of two-way contingency tables given marginals and patterns of interaction. The dependence function provides a partial ordering on bivariate dependence.  相似文献   
54.
The performance of Anderson's classification statistic based on a post-stratified random sample is examined. It is assumed that the training sample is a random sample from a stratified population consisting of two strata with unknown stratum weights. The sample is first segregated into the two strata by post-stratification. The unknown parameters for each of the two populations are then estimated and used in the construction of the plug-in discriminant. Under this procedure, it is shown that additional estimation of the stratum weight will not seriously affect the performance of Anderson's classification statistic. Furthermore, our discriminant enjoys a much higher efficiency than the procedure based on an unclassified sample from a mixture of normals investigated by Ganesalingam and McLachlan (1978).  相似文献   
55.
The plug–in Anderson's covariate classification statistic is constructed on the basis of an initially unclassified training sample by means of posty–stratification. The asymptotic efficiency relative to the discriminant based on an initially classified training sample is evaluated for the case where a covariate is present. Effect of post–stratification is examined.  相似文献   
56.
Methods for estimating the mixing parameters in a mixture of two exponential distributions are proposed. The estimators proposed are consistent and BAN(best asymptotically normal). The optimal spacings for estimating these mixture parameters are calculated.  相似文献   
57.
58.
59.
Fractional moments, product cumulants and product moments of general quadratic expressions in singular and nonsingular normal variables are explicitly evaluated. A general method of deriving such moments is also indicated. Particular cases art; shown to agree with known results.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号