首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   347篇
  免费   8篇
  国内免费   3篇
管理学   7篇
人才学   1篇
丛书文集   7篇
理论方法论   1篇
综合类   120篇
统计学   222篇
  2022年   1篇
  2020年   3篇
  2019年   8篇
  2018年   9篇
  2017年   15篇
  2016年   18篇
  2015年   8篇
  2014年   7篇
  2013年   87篇
  2012年   16篇
  2011年   12篇
  2010年   13篇
  2009年   14篇
  2008年   15篇
  2007年   14篇
  2006年   6篇
  2005年   8篇
  2004年   5篇
  2003年   18篇
  2002年   4篇
  2001年   8篇
  2000年   7篇
  1999年   10篇
  1998年   6篇
  1997年   6篇
  1996年   2篇
  1995年   4篇
  1994年   5篇
  1993年   3篇
  1992年   4篇
  1991年   1篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   6篇
  1982年   1篇
  1980年   1篇
  1978年   1篇
  1977年   2篇
  1976年   2篇
  1975年   1篇
排序方式: 共有358条查询结果,搜索用时 15 毫秒
81.
Since the 1930s, empirical Edgeworth expansions have been employed to develop techniques for approximate, nonparametric statistical inference. The introduction of bootstrap methods has increased the potential usefulness of Edgeworth approximations. In particular, a recent paper by Lee & Young introduced a novel approach to approximating bootstrap distribution functions, using first an empirical Edgeworth expansion and then a more traditional bootstrap approximation to the remainder. In principle, either direct calculation or computer algebra could be used to compute the Edgeworth component, but both methods would often be difficult to implement in practice, not least because of the sheer algebraic complexity of a general Edgeworth expansion. In the present paper we show that a simple but nonstandard Monte Carlo technique is a competitive alternative. It exploits properties of Edgeworth expansions, in particular their parity and the degrees of their polynomial terms, to develop particularly accurate approximations.  相似文献   
82.
回归正交设计在苯二酚体系分光光度测定中的应用研究   总被引:1,自引:0,他引:1  
本文以苯二酚体系的分光光度测定为基础,研究了回归的正交设计这一数理统计的优化试验设计方法,从实验上探讨了应用该法的最佳条件,为该法在多组分体系分光光度测定时更精确,更有效提供了依据。  相似文献   
83.
为了研究雾化施液化学机械抛光工艺参数对抛光效果的影响,以抛光盘转速、抛光压力、雾化器电压、氧化剂质 量分数为因素,以材料去除率和表面粗糙度为评价指标设计正交试验,再对试验结果进行直观分析和权矩阵分析,得到 了各因素对试验结果的影响趋势和程度,并得到了最佳参数组合。结果表明:在雾化施液抛光过程中抛光效果随抛光盘 转速的增大而增大;随抛光压力的增大呈先增大后减小的趋势;随雾化器电压的增大而增大;随氧化剂质量分数的增大 而增大。且影响程度顺序由大到小为:氧化剂质量分数、抛光压力、雾化器电压、抛光盘转速。当抛光盘转速为60 r/ mm、抛光压力48 kPa、雾化器电压55 V、氧化剂质量分数为2.5%时,得到材料去除率和表面粗糙度均达到最佳,此时的 抛光效果最好。  相似文献   
84.
以Ca(NO3)2和(NH4)2HPO4为原料,采用沉淀法合成羟基磷灰石(HAP)粉体。采用正交实验设计讨论了反应物浓度、反应温度、分散剂聚乙二醇的添加量对羟基磷灰石粉体粒径的影响,并在此基础上考察了热处理温度对粉体粒径的影响。采用激光粒度仪测定粉体的粒径,并用XRD、IR等手段对粉体进行表征。实验结果表明,合成羟基磷灰石的最佳工艺条件:温度为60℃、浓度为0.8mol/L、分散剂聚乙二醇的添加量为3%。随热处理温度的升高,羟基磷灰石粉体颗粒长大并发生团聚。经XRD和IR测试结果分析表明,采用该方案可制备出纯度较高的羟基磷灰石超细粉体。  相似文献   
85.
CBN刀精车GCr15轴承钢的试验研究   总被引:1,自引:0,他引:1  
本文利用正交试验法,通过用CBN刀对GCr15轴承钢精车切削试验并对试验数据进行了多元线性处理,得出了在此切削条件下的切削用量三因素与刀具耐用度的Taylor公式,为解决难加工材料GCr15轴承钢的精车及实际生产提供了经验。  相似文献   
86.
Book Reviews     
Books reviewed:
Robert E., Kass and Paul W., Vos, Geometrical Foundations of Asymptotic Inference: Curved Exponential Families
G.S., Maddala and C.R., Rao, (eds) Handbook of Statistics 15: Robust Inference
Gregory C., Reinsel, Elements of Multivariate Time Series Analysis
Murray, Rosenblatt, Gaussian and Non-Gaussian Linear Time Series and Random Fields
William S., Mallios, The Analysis of Sports Forecasting: Modeling Parallels Between Sports Gambling and Financial Markets
Alain, Desrosières, The Politics of Large Numbers — A History of Statistical Reasoning
Mahmut, Parlar, Interactive Operations Research with MAPLE Methods and Models  相似文献   
87.
In this paper, an algorithm for generating random matrices with orthonormal columns is introduced. As pointed out by a referee, the algorithm is almost identical to Wedderburn's (1975) unpublished method. The method can also be considered as an extension of Stewart's (1980) method, which was designed to generate random orthogonal matrices. It is found outperforming a simple extension of the QR factorization method and that of Heiberger's (1978) method. This paper also demonstrates how the algorithm can be used in generating multivariate normal variates with given sample mean and sample covariance matrix.  相似文献   
88.
The authors give the exact coefficient of 1/N in a saddlepoint approximation to the Wilcoxon‐Mann‐Whitney null‐distribution. This saddlepoint approximation is obtained from an Edgeworth approximation to the exponentially tilted distribution. Moreover, the rate of convergence of the relative error is uniformly of order O (1/N) in a large deviation interval as defined in Feller (1971). The proposed method for computing the coefficient of 1/N can be used to obtain the exact coefficients of 1/Ni, for any i. The exact formulas for the cumulant generating function and the cumulants, needed for these results, are those of van Dantzig (1947‐1950).  相似文献   
89.
Orthogonal array (OA)-based Latin hypercube designs, also called U-designs, have been popularly adopted in designing a computer experiment. Nested U-designs, sliced U-designs, strong OA-based U-designs and correlation controlled U-designs are four types of extensions of U-designs for different applications in computer experiments. Their elaborate multi-layer structure or multi-dimensional uniformity, which makes them desirable for different applications, brings difficulty in analysing the related statistical properties. In this paper, we derive central limit theorems for these four types of designs by introducing a newly constructed discrete function. It is shown that the means of the four samples generated from these four types of designs asymptotically follow the same normal distribution. These results are useful in assessing the confidence intervals of the gross mean. Two examples are presented to illustrate the closeness of the simulated density plots to the corresponding normal distributions.  相似文献   
90.
We derive orthogonal expansions in terms of the Meixner polynomials of the first kind for hypergeometric probabilities. We show how these expansions can be used to obtain negative binomial approximations to negative hypergeometric probabilities. Some limit properties of these approximations are studied and also the extension of these results to cumulative probabilities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号