首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   3篇
  国内免费   1篇
丛书文集   1篇
理论方法论   11篇
综合类   5篇
社会学   7篇
统计学   23篇
  2023年   8篇
  2021年   3篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2017年   4篇
  2016年   1篇
  2015年   2篇
  2014年   5篇
  2013年   10篇
  2011年   2篇
  2008年   2篇
  2007年   3篇
  2006年   1篇
  2005年   1篇
  2002年   1篇
排序方式: 共有47条查询结果,搜索用时 15 毫秒
1.
In oncology, it may not always be possible to evaluate the efficacy of new medicines in placebo-controlled trials. Furthermore, while some newer, biologically targeted anti-cancer treatments may be expected to deliver therapeutic benefit in terms of better tolerability or improved symptom control, they may not always be expected to provide increased efficacy relative to existing therapies. This naturally leads to the use of active-control, non-inferiority trials to evaluate such treatments. In recent evaluations of anti-cancer treatments, the non-inferiority margin has often been defined in terms of demonstrating that at least 50% of the active control effect has been retained by the new drug using methods such as those described by Rothmann et al., Statistics in Medicine 2003; 22:239-264 and Wang and Hung Controlled Clinical Trials 2003; 24:147-155. However, this approach can lead to prohibitively large clinical trials and results in a tendency to dichotomize trial outcome as either 'success' or 'failure' and thus oversimplifies interpretation. With relatively modest modification, these methods can be used to define a stepwise approach to design and analysis. In the first design step, the trial is sized to show indirectly that the new drug would have beaten placebo; in the second analysis step, the probability that the new drug is superior to placebo is assessed and, if sufficiently high in the third and final step, the relative efficacy of the new drug to control is assessed on a continuum of effect retention via an 'effect retention likelihood plot'. This stepwise approach is likely to provide a more complete assessment of relative efficacy so that the value of new treatments can be better judged.  相似文献   
2.
Despite more than thirty years of debate, disagreement persists among research ethicists about the most appropriate way to interpret the U.S. regulations on pediatric research, specifically the categories of “minimal risk” and a “minor increase over minimal risk.” Focusing primarily on the definition of “minimal risk,” we argue in this article that the continued debate about the pediatric risk categories is at least partly because their conceptual status is seldom considered directly. Once this is done, it becomes clear that the most popular strategy for interpreting “minimal risk”—defining it as a specific set of risks—is indefensible and, from a pragmatic perspective, unlikely to resolve disagreement. Primarily this is because judgments about minimal risk are both normative and heavily intuitive in nature and thus cannot easily be captured by reductions to a given set of risks. We suggest instead that a more defensible approach to evaluating risk should incorporate room for reflection and deliberation. This dispositional, deliberative framework can nonetheless accommodate a number of intellectual resources for reducing reliance on sheer intuition and improving the quality of risk evaluations.  相似文献   
3.
为了解决传统临床见习模式存在的弊端,提高临床教学质量,对2003级护理本科生和2004级护理专科生采用"电教、讨论与集中见习"的模式进行临床教学,并与2002级护理本科生和2003级护理专科生进行对照,结果显示该模式提高了教学效果,节约了开支,减少了浪费,具有可行性。  相似文献   
4.
Proportional hazards are a common assumption when designing confirmatory clinical trials in oncology. This assumption not only affects the analysis part but also the sample size calculation. The presence of delayed effects causes a change in the hazard ratio while the trial is ongoing since at the beginning we do not observe any difference between treatment arms, and after some unknown time point, the differences between treatment arms will start to appear. Hence, the proportional hazards assumption no longer holds, and both sample size calculation and analysis methods to be used should be reconsidered. The weighted log‐rank test allows a weighting for early, middle, and late differences through the Fleming and Harrington class of weights and is proven to be more efficient when the proportional hazards assumption does not hold. The Fleming and Harrington class of weights, along with the estimated delay, can be incorporated into the sample size calculation in order to maintain the desired power once the treatment arm differences start to appear. In this article, we explore the impact of delayed effects in group sequential and adaptive group sequential designs and make an empirical evaluation in terms of power and type‐I error rate of the of the weighted log‐rank test in a simulated scenario with fixed values of the Fleming and Harrington class of weights. We also give some practical recommendations regarding which methodology should be used in the presence of delayed effects depending on certain characteristics of the trial.  相似文献   
5.
Feng Hao 《Sociology Compass》2023,17(10):e13126
This study aims to estimate the pediatric COVID-19 vaccine uptake and the impact of social network and Biden approval. A national survey was conducted by Qualtrics from September 26 to 19 October 2022, and respondents who identified as primary guardians of children under 18 are included in this study. Findings show that parents are more likely to vaccinate children between 12 and 17 than children between 5 and 11 or below 5. The means of measures for social network and Biden approval for parents who have vaccinated children across different age groups are significantly higher than the corresponding means for parents whose children remain unvaccinated. Structural equation modeling results suggest the social network and Biden approval positively affect parents' decision to vaccinate children. The former predictor also mediates the latter on the outcome measure. The findings are significant when analyzing the sample of parents with children over five. These findings contribute to the literature and have policy implications for leveraging interventions and optimizing vaccination for children.  相似文献   
6.
There is considerable debate surrounding the choice of methods to estimate information fraction for futility monitoring in a randomized non-inferiority maximum duration trial. This question was motivated by a pediatric oncology study that aimed to establish non-inferiority for two primary outcomes. While non-inferiority was determined for one outcome, the futility monitoring of the other outcome failed to stop the trial early, despite accumulating evidence of inferiority. For a one-sided trial design for which the intervention is inferior to the standard therapy, futility monitoring should provide the opportunity to terminate the trial early. Our research focuses on the Total Control Only (TCO) method, which is defined as a ratio of observed events to total events exclusively within the standard treatment regimen. We investigate its properties in stopping a trial early in favor of inferiority. Simulation results comparing the TCO method with alternative methods, one based on the assumption of an inferior treatment effect (TH0), and the other based on a specified hypothesis of a non-inferior treatment effect (THA), were provided under various pediatric oncology trial design settings. The TCO method is the only method that provides unbiased information fraction estimates regardless of the hypothesis assumptions and exhibits a good power and a comparable type I error rate at each interim analysis compared to other methods. Although none of the methods is uniformly superior on all criteria, the TCO method possesses favorable characteristics, making it a compelling choice for estimating the information fraction when the aim is to reduce cancer treatment-related adverse outcomes.  相似文献   
7.
Compared with most of the existing phase I designs, the recently proposed calibration-free odds (CFO) design has been demonstrated to be robust, model-free, and easy to use in practice. However, the original CFO design cannot handle late-onset toxicities, which have been commonly encountered in phase I oncology dose-finding trials with targeted agents or immunotherapies. To account for late-onset outcomes, we extend the CFO design to its time-to-event (TITE) version, which inherits the calibration-free and model-free properties. One salient feature of CFO-type designs is to adopt game theory by competing three doses at a time, including the current dose and the two neighboring doses, while interval-based designs only use the data at the current dose and is thus less efficient. We conduct comprehensive numerical studies for the TITE-CFO design under both fixed and randomly generated scenarios. TITE-CFO shows robust and efficient performances compared with interval-based and model-based counterparts. As a conclusion, the TITE-CFO design provides robust, efficient, and easy-to-use alternatives for phase I trials when the toxicity outcome is late-onset.  相似文献   
8.
Historically early phase oncology drug development programmes have been based on the belief that “more is better”. Furthermore, rule-based study designs such as the “3 + 3” design are still often used to identify the MTD. Phillips and Clark argue that newer Bayesian model-assisted designs such as the BOIN design should become the go to designs for statisticians for MTD finding. This short communication goes one stage further and argues that Bayesian model-assisted designs such as the BOIN12 which balances risk-benefit should be included as one of the go to designs for early phase oncology trials, depending on the study objectives. Identifying the optimal biological dose for future research for many modern targeted drugs, immunotherapies, cell therapies and vaccine therapies can save significant time and resources.  相似文献   
9.
Randomised controlled trials are considered the gold standard in trial design. However, phase II oncology trials with a binary outcome are often single-arm. Although a number of reasons exist for choosing a single-arm trial, the primary reason is that single-arm designs require fewer participants than their randomised equivalents. Therefore, the development of novel methodology that makes randomised designs more efficient is of value to the trials community. This article introduces a randomised two-arm binary outcome trial design that includes stochastic curtailment (SC), allowing for the possibility of stopping a trial before the final conclusions are known with certainty. In addition to SC, the proposed design involves the use of a randomised block design, which allows investigators to control the number of interim analyses. This approach is compared with existing designs that also use early stopping, through the use of a loss function comprised of a weighted sum of design characteristics. Comparisons are also made using an example from a real trial. The comparisons show that for many possible loss functions, the proposed design is superior to existing designs. Further, the proposed design may be more practical, by allowing a flexible number of interim analyses. One existing design produces superior design realisations when the anticipated response rate is low. However, when using this design, the probability of rejecting the null hypothesis is sensitive to misspecification of the null response rate. Therefore, when considering randomised designs in phase II, we recommend the proposed approach be preferred over other sequential designs.  相似文献   
10.
Many oncology studies incorporate a blinded independent central review (BICR) to make an assessment of the integrity of the primary endpoint, progression free survival. Recently, it has been suggested that, in order to assess the potential for bias amongst investigators, a BICR amongst only a sample of patients could be performed; if evidence of bias is detected, according to a predefined threshold, the BICR is then assessed in all patients, otherwise, it is concluded that the sample was sufficient to rule out meaningful levels of bias. In this paper, we present an approach that adapts a method originally created for defining futility bounds in group sequential designs. The hazard ratio ratio, the ratio of the hazard ratio (HR) for the treatment effect estimated from the BICR to the corresponding HR for the investigator assessments, is used as the metric to define bias. The approach is simple to implement and ensures a high probability that a substantial true bias will be detected. In the absence of bias, there is a high probability of accepting the accuracy of local evaluations based on the sample, in which case an expensive BICR of all patients is avoided. The properties of the approach are demonstrated by retrospective application to a completed Phase III trial in colorectal cancer. The same approach could easily be adapted for other disease settings, and for test statistics other than the hazard ratio. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号