首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   789篇
  免费   18篇
  国内免费   3篇
管理学   87篇
人口学   5篇
丛书文集   1篇
综合类   115篇
社会学   2篇
统计学   600篇
  2023年   1篇
  2022年   4篇
  2021年   2篇
  2020年   7篇
  2019年   13篇
  2018年   18篇
  2017年   43篇
  2016年   17篇
  2015年   18篇
  2014年   28篇
  2013年   227篇
  2012年   57篇
  2011年   17篇
  2010年   15篇
  2009年   19篇
  2008年   24篇
  2007年   16篇
  2006年   17篇
  2005年   30篇
  2004年   22篇
  2003年   13篇
  2002年   29篇
  2001年   21篇
  2000年   11篇
  1999年   23篇
  1998年   19篇
  1997年   18篇
  1996年   9篇
  1995年   7篇
  1994年   8篇
  1993年   10篇
  1992年   15篇
  1991年   7篇
  1990年   3篇
  1989年   2篇
  1988年   4篇
  1987年   4篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1983年   3篇
  1981年   4篇
排序方式: 共有810条查询结果,搜索用时 140 毫秒
21.
In this paper, we investigate four existing and three new confidence interval estimators for the negative binomial proportion (i.e., proportion under inverse/negative binomial sampling). An extensive and systematic comparative study among these confidence interval estimators through Monte Carlo simulations is presented. The performance of these confidence intervals are evaluated in terms of their coverage probabilities and expected interval widths. Our simulation studies suggest that the confidence interval estimator based on saddlepoint approximation is more appealing for large coverage levels (e.g., nominal level≤1% ) whereas the score confidence interval estimator is more desirable for those commonly used coverage levels (e.g., nominal level>1% ). We illustrate these confidence interval construction methods with a real data set from a maternal congenital heart disease study.  相似文献   
22.
When we are given only a transform such as the moment-generating function of a distribution, it is rare that we can efficiently simulate random variables. Possible approaches such as the inverse transform using numerical inversion of the transform are computationally very expensive. However, the saddlepoint approximation is known to be exact for the Normal, Gamma, and inverse Gaussian distribution and remarkably accurate for a large number of others. We explore the efficient use of the saddlepoint approximation for simulating distributions and provide three examples of the accuracy of these simulations.  相似文献   
23.
This article presents the statistical inferences on Weibull parameters with the data that are progressively type II censored. The maximum likelihood estimators are derived. For incorporation of previous information with current data, the Bayesian approach is considered. We obtain the Bayes estimators under squared error loss with a bivariate prior distribution, and derive the credible intervals for the parameters of Weibull distribution. Also, the Bayes prediction intervals for future observations are obtained in the one- and two-sample cases. The method is shown to be practical, although a computer program is required for its implementation. A numerical example is presented for illustration and some simulation study are performed.  相似文献   
24.
The Anderson-Darling goodness-of-fit test has a highly skewed and non-standard limit distribution. Various attempts have been made to tabulate the associated critical points, using both theoretical approximations and simulation methods. We show that a standard saddlepoint approximation performs well in both tails of the distribution. It is markedly superior to other theoretical approximations in the lower tail of the distribution.  相似文献   
25.
文章选取随机变量为系统的随机变量研究含有随机参数混沌系统的Hopf分岔,利用Chebyshev正交多项式逼近理论将含有随机变量的系统转化为等价的确定性系统,通过Hopf分岔定理和Lyapunov系数讨论了随机参数系统的Hopf分岔及稳定性,发现随机系统的渐进稳定性参数区间大小不仅和确定性参数有关,还与随机参数有非常密切的关系.  相似文献   
26.
We investigate empirical likelihood for the additive hazards model with current status data. An empirical log-likelihood ratio for a vector or subvector of regression parameters is defined and its limiting distribution is shown to be a standard chi-squared distribution. The proposed inference procedure enables us to make empirical likelihood-based inference for the regression parameters. Finite sample performance of the proposed method is assessed in simulation studies to compare with that of a normal approximation method, it shows that the empirical likelihood method provides more accurate inference than the normal approximation method. A real data example is used for illustration.  相似文献   
27.
The authors show how saddlepoint techniques lead to highly accurate approximations for Bayesian predictive densities and cumulative distribution functions in stochastic model settings where the prior is tractable, but not necessarily the likelihood or the predictand distribution. They consider more specifically models involving predictions associated with waiting times for semi‐Markov processes whose distributions are indexed by an unknown parameter θ. Bayesian prediction for such processes when they are not stationary is also addressed and the inverse‐Gaussian based saddlepoint approximation of Wood, Booth & Butler (1993) is shown to accurately deal with the nonstationarity whereas the normal‐based Lugannani & Rice (1980) approximation cannot, Their methods are illustrated by predicting various waiting times associated with M/M/q and M/G/1 queues. They also discuss modifications to the matrix renewal theory needed for computing the moment generating functions that are used in the saddlepoint methods.  相似文献   
28.
The combined model accounts for different forms of extra-variability and has traditionally been applied in the likelihood framework, or in the Bayesian setting via Markov chain Monte Carlo. In this article, integrated nested Laplace approximation is investigated as an alternative estimation method for the combined model for count data, and compared with the former estimation techniques. Longitudinal, spatial, and multi-hierarchical data scenarios are investigated in three case studies as well as a simulation study. As a conclusion, integrated nested Laplace approximation provides fast and precise estimation, while avoiding convergence problems often seen when using Markov chain Monte Carlo.  相似文献   
29.
Summary.  Structured additive regression models are perhaps the most commonly used class of models in statistical applications. It includes, among others, (generalized) linear models, (generalized) additive models, smoothing spline models, state space models, semiparametric regression, spatial and spatiotemporal models, log-Gaussian Cox processes and geostatistical and geoadditive models. We consider approximate Bayesian inference in a popular subset of structured additive regression models, latent Gaussian models , where the latent field is Gaussian, controlled by a few hyperparameters and with non-Gaussian response variables. The posterior marginals are not available in closed form owing to the non-Gaussian response variables. For such models, Markov chain Monte Carlo methods can be implemented, but they are not without problems, in terms of both convergence and computational time. In some practical applications, the extent of these problems is such that Markov chain Monte Carlo sampling is simply not an appropriate tool for routine analysis. We show that, by using an integrated nested Laplace approximation and its simplified version, we can directly compute very accurate approximations to the posterior marginals. The main benefit of these approximations is computational: where Markov chain Monte Carlo algorithms need hours or days to run, our approximations provide more precise estimates in seconds or minutes. Another advantage with our approach is its generality, which makes it possible to perform Bayesian analysis in an automatic, streamlined way, and to compute model comparison criteria and various predictive measures so that models can be compared and the model under study can be challenged.  相似文献   
30.
Semiparametric regression models that use spline basis functions with penalization have graphical model representations. This link is more powerful than previously established mixed model representations of semiparametric regression, as a larger class of models can be accommodated. Complications such as missingness and measurement error are more naturally handled within the graphical model architecture. Directed acyclic graphs, also known as Bayesian networks, play a prominent role. Graphical model-based Bayesian 'inference engines', such as bugs and vibes , facilitate fitting and inference. Underlying these are Markov chain Monte Carlo schemes and recent developments in variational approximation theory and methodology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号