首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
管理学   1篇
统计学   3篇
  2020年   1篇
  2014年   1篇
  2011年   1篇
  2010年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
In high‐reliability organizations (HROs) even minor errors can seriously hinder the very existence of the firm and the safety of employees and customers. Field studies have shown that HROs encourage the reporting of errors and near misses, exploiting these incidents to improve their operative processes. In this paper, we describe this practice as a ‘no blame’ approach to error management, and link it to learning theory, showing how no blame practices can enhance organizational learning. By taking a cognitive perspective of organizations, we draw on existing contributions and on a set of empirical case studies to discuss the characteristics of no blame practices, and their applicability in traditional, non‐HROs. Our findings show that, in exploiting information from error‐reporting, no blame practices are beneficial in environments where learning and reliability issues are particularly relevant. Empirical evidence suggests that a no blame approach can be extremely constructive for organizations that want to enhance their learning processes. We conclude that a no blame approach is a valuable way to achieve an organization that has flexibility and variability. However, no blame practices imply a set of organizational issues and costs that pose significant challenges to firms operating in non‐high‐reliability settings. The findings from our study contribute to the literature on HROs and organizational learning.  相似文献   
2.
This paper deals with the problem of estimating the multivariate version of the Conditional-Tail-Expectation, proposed by Di Bernardino et al. [(2013), ‘Plug-in Estimation of Level Sets in a Non-Compact Setting with Applications in Multivariable Risk Theory’, ESAIM: Probability and Statistics, (17), 236–256]. We propose a new nonparametric estimator for this multivariate risk-measure, which is essentially based on Kendall's process [Genest and Rivest, (1993), ‘Statistical Inference Procedures for Bivariate Archimedean Copulas’, Journal of American Statistical Association, 88(423), 1034–1043]. Using the central limit theorem for Kendall's process, proved by Barbe et al. [(1996), ‘On Kendall's Process’, Journal of Multivariate Analysis, 58(2), 197–229], we provide a functional central limit theorem for our estimator. We illustrate the practical properties of our nonparametric estimator on simulations and on two real test cases. We also propose a comparison study with the level sets-based estimator introduced in Di Bernardino et al. [(2013), ‘Plug-In Estimation of Level Sets in A Non-Compact Setting with Applications in Multivariable Risk Theory’, ESAIM: Probability and Statistics, (17), 236–256] and with (semi-)parametric approaches.  相似文献   
3.
Abstract

In multivariate extreme value theory (MEVT), the focus is on analysis outside of the observable sampling zone, which implies that the region of interest is associated to high risk levels. This work provides tools to include directional notions into the MEVT, giving the opportunity to characterize the recently introduced directional multivariate quantiles (DMQ) at high levels. Then, an out-sample estimation method for these quantiles is given. A bootstrap procedure carries out the estimation of the tuning parameter in this multivariate framework and helps with the estimation of the DMQ. Asymptotic normality for the proposed estimator is provided and the methodology is illustrated with simulated data-sets. Finally, a real-life application to a financial case is also performed.  相似文献   
4.
The assumption that all random errors in the linear regression model share the same variance (homoskedasticity) is often violated in practice. The ordinary least squares estimator of the vector of regression parameters remains unbiased, consistent and asymptotically normal under unequal error variances. Many practitioners then choose to base their inferences on such an estimator. The usual practice is to couple it with an asymptotically valid estimation of its covariance matrix, and then carry out hypothesis tests that are valid under heteroskedasticity of unknown form. We use numerical integration methods to compute the exact null distributions of some quasi-t test statistics, and propose a new covariance matrix estimator. The numerical results favor testing inference based on the estimator we propose.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号