首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
管理学   4篇
  2022年   2篇
  2018年   2篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
In this paper, we consider an extension of the classical facility location problem, namely k-facility location problem with linear penalties. In contrast to the classical facility location problem, this problem opens no more than k facilities and pays a penalty cost for any non-served client. We present a local search algorithm for this problem with a similar but more technical analysis due to the extra penalty cost, compared to that in Zhang (Theoretical Computer Science 384:126–135, 2007). We show that the approximation ratio of the local search algorithm is \(2 + 1/p + \sqrt{3+ 2/p+ 1/p^2} + \epsilon \), where \(p \in {\mathbb {Z}}_+\) is a parameter of the algorithm and \(\epsilon >0\) is a positive number.  相似文献   
2.
We consider a scheduling problem where machines need to be rented from the cloud in order to process jobs. There are two types of machines available which can be rented for machine-type dependent prices and for arbitrary durations. However, a machine-type dependent setup time is required before a machine is available for processing. Jobs arrive online over time, have deadlines and machine-type dependent sizes. The objective is to rent machines and schedule jobs so as to meet all deadlines while minimizing the rental cost. As we observe the slack of jobs to have a fundamental influence on the competitiveness, we parameterize instances by their (minimum) slack. An instance is called to have a slack of \(\beta \) if, for all jobs, the difference between the job’s release time and the latest point in time at which it needs to be started is at least \(\beta \). While for \(\beta < s\) no finite competitiveness is possible, our main result is an online algorithm for \(\beta = (1+\varepsilon )s\) with Open image in new window , where s denotes the largest setup time. Its competitiveness only depends on \(\varepsilon \) and the cost ratio of the machine types and is proven to be optimal up to a factor of Open image in new window .  相似文献   
3.
Ji  Sai  Xu  Dachuan  Li  Min  Wang  Yishui 《Journal of Combinatorial Optimization》2022,43(5):933-952

Correlation clustering problem is a clustering problem which has many applications such as protein interaction networks, cross-lingual link detection, communication networks, and social computing. In this paper, we introduce two variants of correlation clustering problem: correlation clustering problem on uncertain graphs and correlation clustering problem with non-uniform hard constrained cluster sizes. Both problems overcome part of the limitations of the existing variants of correlation clustering problem and have practical applications in the real world. We provide a constant approximation algorithm and two approximation algorithms for the former and the latter problem, respectively.

  相似文献   
4.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号