首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
管理学   1篇
人口学   1篇
  2023年   1篇
  2020年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
Air pollution has been linked to an increased risk of several respiratory diseases in children, especially respiratory tract infections. The present study aims to evaluate the association between pediatric emergency department (PED) presentations for bronchiolitis and air pollution. PED presentations due to bronchiolitis in children aged less than 1 year were retrospectively collected from 2007 to 2018 in Padova, Italy, together with daily environmental data. A conditional logistic regression based on a time-stratified case-crossover design was performed to evaluate the association between PED presentations and exposure to NO2, PM2.5, and PM10. Models were adjusted for temperature, relative humidity, atmospheric pressure, and public holidays. Delayed effects in time were evaluated using distributed lag non-linear models. Odds ratio for lagged exposure from 0 to 14 days were obtained. Overall, 2251 children presented to the PED for bronchiolitis. Infants’ exposure to higher concentrations of PM10 and PM2.5 in the 5 days before the presentation to the PED increased the risk of accessing the PED by more than 10%, whereas high concentrations of NO2 between 2 and 12 days before the PED presentation were associated with an increased risk of up to 30%. The association between pollutants and infants who required hospitalization was even greater. A cumulative effect of NO2 among the 2 weeks preceding the presentation was also observed. In summary, PM and NO2 concentrations are associated with PED presentations and hospitalizations for bronchiolitis. Exposure of infants to air pollution could damage the respiratory tract mucosa, facilitating viral infections and exacerbating symptoms.  相似文献   
2.

We evaluate how changes in weather patterns affected rural-urban migration across 41 sub-Saharan African countries, by age and sex, over the 1980–2015 period. We combine recent age- and sex-specific estimates of net rural-urban migration with historical data on rainfall and temperature from the Climate Research Unit (CRU). We also compare standard unweighted estimates of rainfall and temperature to estimates weighted by the proportion of the country’s total rural population in the CRU grid. Results show that rural out-migration of young adults is the most sensitive to shifts in weather patterns, with lower rainfall, lower variability in rainfall, and higher temperatures increasing subsequent rural out-migration—though the last of these is not observed in weighted models. The strength of these effects has grown stronger over time for 20–24 year olds, though weaker above age 30. In contrast, increasing temperature variability is associated with a higher rural in-migration of children (0–9) and older adults (55–64). Gender differences in these effects are minimal and concentrated in areas which experienced heavy reductions in rainfall.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号