首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   1篇
人口学   1篇
统计学   1篇
  2016年   1篇
  1999年   1篇
排序方式: 共有2条查询结果,搜索用时 203 毫秒
1
1.
2.
For clinical trials with time‐to‐event endpoints, predicting the accrual of the events of interest with precision is critical in determining the timing of interim and final analyses. For example, overall survival (OS) is often chosen as the primary efficacy endpoint in oncology studies, with planned interim and final analyses at a pre‐specified number of deaths. Often, correlated surrogate information, such as time‐to‐progression (TTP) and progression‐free survival, are also collected as secondary efficacy endpoints. It would be appealing to borrow strength from the surrogate information to improve the precision of the analysis time prediction. Currently available methods in the literature for predicting analysis timings do not consider utilizing the surrogate information. In this article, using OS and TTP as an example, a general parametric model for OS and TTP is proposed, with the assumption that disease progression could change the course of the overall survival. Progression‐free survival, related both to OS and TTP, will be handled separately, as it can be derived from OS and TTP. The authors seek to develop a prediction procedure using a Bayesian method and provide detailed implementation strategies under certain assumptions. Simulations are performed to evaluate the performance of the proposed method. An application to a real study is also provided. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号