首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   1篇
社会学   2篇
统计学   4篇
  2021年   2篇
  2018年   1篇
  2016年   1篇
  2012年   1篇
  1996年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Response‐adaptive randomisation (RAR) can considerably improve the chances of a successful treatment outcome for patients in a clinical trial by skewing the allocation probability towards better performing treatments as data accumulates. There is considerable interest in using RAR designs in drug development for rare diseases, where traditional designs are not either feasible or ethically questionable. In this paper, we discuss and address a major criticism levelled at RAR: namely, type I error inflation due to an unknown time trend over the course of the trial. The most common cause of this phenomenon is changes in the characteristics of recruited patients—referred to as patient drift. This is a realistic concern for clinical trials in rare diseases due to their lengthly accrual rate. We compute the type I error inflation as a function of the time trend magnitude to determine in which contexts the problem is most exacerbated. We then assess the ability of different correction methods to preserve type I error in these contexts and their performance in terms of other operating characteristics, including patient benefit and power. We make recommendations as to which correction methods are most suitable in the rare disease context for several RAR rules, differentiating between the 2‐armed and the multi‐armed case. We further propose a RAR design for multi‐armed clinical trials, which is computationally efficient and robust to several time trends considered.  相似文献   
2.
3.
Multi-arm trials are an efficient way of simultaneously testing several experimental treatments against a shared control group. As well as reducing the sample size required compared to running each trial separately, they have important administrative and logistical advantages. There has been debate over whether multi-arm trials should correct for the fact that multiple null hypotheses are tested within the same experiment. Previous opinions have ranged from no correction is required, to a stringent correction (controlling the probability of making at least one type I error) being needed, with regulators arguing the latter for confirmatory settings. In this article, we propose that controlling the false-discovery rate (FDR) is a suitable compromise, with an appealing interpretation in multi-arm clinical trials. We investigate the properties of the different correction methods in terms of the positive and negative predictive value (respectively how confident we are that a recommended treatment is effective and that a non-recommended treatment is ineffective). The number of arms and proportion of treatments that are truly effective is varied. Controlling the FDR provides good properties. It retains the high positive predictive value of FWER correction in situations where a low proportion of treatments is effective. It also has a good negative predictive value in situations where a high proportion of treatments is effective. In a multi-arm trial testing distinct treatment arms, we recommend that sponsors and trialists consider use of the FDR.  相似文献   
4.
The health and development of a group of children aged 3-7 years born to and reared by mothers who abused opiates when pregnant and who remain on methadone maintenance was compared to a group of age and socially matched control children. There was no difference between the two groups in terms of health and development although the children whose mothers were on methadone had smaller head circumference measurements than the controls. More than half of the index children had been on the child protection register during infancy; all but one were off the register at the time of the study. The results suggest that drug-abusing women who are on methadone maintenance and attending a drug dependency unit may rear and care for their children as well as parents from a similar social background who are not drug abusers.  相似文献   
5.
two‐stage studies may be chosen optimally by minimising a single characteristic like the maximum sample size. However, given that an investigator will initially select a null treatment e?ect and the clinically relevant di?erence, it is better to choose a design that also considers the expected sample size for each of these values. The maximum sample size and the two expected sample sizes are here combined to produce an expected loss function to ?nd designs that are admissible. Given the prior odds of success and the importance of the total sample size, minimising the expected loss gives the optimal design for this situation. A novel triangular graph to represent the admissible designs helps guide the decision‐making process. The H 0‐optimal, H 1‐optimal, H 0‐minimax and H 1‐minimax designs are all particular cases of admissible designs. The commonly used H 0‐optimal design is rarely good when allowing stopping for e?cacy. Additionally, the δ‐minimax design, which minimises the maximum expected sample size, is sometimes admissible under the loss function. However, the results can be varied and each situation will require the evaluation of all the admissible designs. Software to do this is provided. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
6.
Umbrella trials are an innovative trial design where different treatments are matched with subtypes of a disease, with the matching typically based on a set of biomarkers. Consequently, when patients can be positive for more than one biomarker, they may be eligible for multiple treatment arms. In practice, different approaches could be applied to allocate patients who are positive for multiple biomarkers to treatments. However, to date there has been little exploration of how these approaches compare statistically. We conduct a simulation study to compare five approaches to handling treatment allocation in the presence of multiple biomarkers – equal randomisation; randomisation with fixed probability of allocation to control; Bayesian adaptive randomisation (BAR); constrained randomisation; and hierarchy of biomarkers. We evaluate these approaches under different scenarios in the context of a hypothetical phase II biomarker-guided umbrella trial. We define the pairings representing the pre-trial expectations on efficacy as linked pairs, and the other biomarker-treatment pairings as unlinked. The hierarchy and BAR approaches have the highest power to detect a treatment-biomarker linked interaction. However, the hierarchy procedure performs poorly if the pre-specified treatment-biomarker pairings are incorrect. The BAR method allocates a higher proportion of patients who are positive for multiple biomarkers to promising treatments when an unlinked interaction is present. In most scenarios, the constrained randomisation approach best balances allocation to all treatment arms. Pre-specification of an approach to deal with treatment allocation in the presence of multiple biomarkers is important, especially when overlapping subgroups are likely.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号