首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
管理学   6篇
社会学   1篇
统计学   1篇
  2021年   1篇
  2013年   2篇
  2011年   1篇
  2006年   1篇
  2005年   2篇
  2001年   1篇
排序方式: 共有8条查询结果,搜索用时 125 毫秒
1
1.
We present efficient algorithms for solving the problem of computing an optimal penetration (a ray or a semi-ray) among weighted regions in 2-D and 3-D spaces. This problem finds applications in several areas, such as radiation therapy, geological exploration, and environmental engineering. Our algorithms are based on a combination of geometric techniques and optimization methods. Our geometric analysis shows that the d-D (d = 2, 3) optimal penetration problem can be reduced to solving O(n 2(d–1)) instances of certain special types of non-linear optimization problems, where n is the total number of vertices of the regions. We also give implementation results of our 2-D algorithms.  相似文献   
2.
We present a new method for solving asset pricing models, which yields an analytic price–dividend function of one state variable. To illustrate our method we give a detailed analysis of Abel's asset pricing model. A function is analytic in an open interval if it can be represented as a convergent power series near every point of that interval. In addition to allowing us to solve for the exact equilibrium price–dividend function, the analyticity property also lets us assess the accuracy of any numerical solution procedure used in the asset pricing literature.  相似文献   
3.
In this paper, we present approximation algorithms for solving the line facility location problem in weighted regions. The weighted region setup is a more realistic model for many facility location problems that arise in practical applications. Our algorithms exploit an interesting property of the problem, that could possibly be used for solving other problems in weighted regions.  相似文献   
4.
In recent years, more and more algorithms related to imprecise data have been proposed. Specifically, some algorithms on computing the maximum area convex hull are designed recently when the imprecise data are modeled as non-overlapping axis-aligned squares or as equal size squares. The time complexity of the best known algorithm based on non-overlapping axis-aligned squares is O(n 7). If the squares have equal size and can overlap, the time complexity of the best known algorithm is O(n 5). In this paper, we improve the former from O(n 7) to O(n 5) and improve the latter from O(n 5) to O(n 2). These results are obtained by exploiting the non-trivial geometric properties of the problems.  相似文献   
5.
6.

About the Authors

About the Authors  相似文献   
7.
This paper presents an improved algorithm for solving the sum of linear fractional functions (SOLF) problem in 1-D and 2-D. A key subproblem to our solution is the off-line ratio query (OLRQ) problem, which asks to find the optimal values of a sequence of m linear fractional functions (called ratios), each ratio subject to a feasible domain defined by O(n) linear constraints. Based on some geometric properties and the parametric linear programming technique, we develop an algorithm that solves the OLRQ problem in O((m+n)log (m+n)) time. The OLRQ algorithm can be used to speed up every iteration of a known iterative SOLF algorithm, from O(m(m+n)) time to O((m+n)log (m+n)), in 1-D and 2-D. Implementation results of our improved 1-D and 2-D SOLF algorithm have shown that in most cases it outperforms the commonly-used approaches for the SOLF problem. We also apply our techniques to some problems in computational geometry and other areas, improving the previous results.This research was supported in part by the National Science Foundation under Grant CCR-9623585.The research of this author was supported in part by National Science Foundation under grant CCF-0430366.Grant-in-Aid of Ministry of Science, Culture and Education of Japan, No. 10780274.The research of this author was supported in part by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Scientific Researchon Priority Areas  相似文献   
8.
In this paper we study several geometric problems of color-spanning sets: given n points with m colors in the plane, selecting m points with m distinct colors such that some geometric properties of the m selected points are minimized or maximized. The geometric properties studied in this paper are the maximum diameter, the largest closest pair, the planar smallest minimum spanning tree, the planar largest minimum spanning tree and the planar smallest perimeter convex hull. We propose an O(n 1+ε ) time algorithm for the maximum diameter color-spanning set problem where ε could be an arbitrarily small positive constant. Then, we present hardness proofs for the other problems and propose two efficient constant factor approximation algorithms for the planar smallest perimeter color-spanning convex hull problem.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号