首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
统计学   3篇
  2020年   1篇
  2013年   1篇
  2012年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.

We discuss the multivariate (2L-variate) correlation structure and the asymptotic distribution for the group-sequential weighted logrank statistics formulated when monitoring two correlated event-time outcomes in clinical trials. The asymptotic distribution and the variance–covariance for the 2L-variate weighted logrank statistic are derived as available in various group-sequential trial designs. These methods are used to determine a group-sequential testing procedure based on calendar times or information fractions. We apply the theoretical results to a group-sequential method for monitoring a clinical trial with early stopping for efficacy when the trial is designed to evaluate the joint effect on two correlated event-time outcomes. We illustrate the method with application to a clinical trial and describe how to calculate the required sample sizes and numbers of events.

  相似文献   
2.
Clinical trials with event‐time outcomes as co‐primary contrasts are common in many areas such as infectious disease, oncology, and cardiovascular disease. We discuss methods for calculating the sample size for randomized superiority clinical trials with two correlated time‐to‐event outcomes as co‐primary contrasts when the time‐to‐event outcomes are exponentially distributed. The approach is simple and easily applied in practice. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
3.
The clinical efficacy of a new treatment may often be better evaluated by two or more co-primary endpoints. Recently, in pharmaceutical drug development, there has been increasing discussion regarding establishing statistically significant favorable results on more than one endpoint in comparisons between treatments, which is referred to as a problem of multiple co-primary endpoints. Several methods have been proposed for calculating the sample size required to design a trial with multiple co-primary correlated endpoints. However, because these methods require users to have considerable mathematical sophistication and knowledge of programming techniques, their application and spread may be restricted in practice. To improve the convenience of these methods, in this paper, we provide a useful formula with accompanying numerical tables for sample size calculations to design clinical trials with two treatments, where the efficacy of a new treatment is demonstrated on continuous co-primary endpoints. In addition, we provide some examples to illustrate the sample size calculations made using the formula. Using the formula and the tables, which can be read according to the patterns of correlations and effect size ratios expected in multiple co-primary endpoints, makes it convenient to evaluate the required sample size promptly.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号